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Data fuels science for society –
but what about the health domain?
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ImageNet 2012: Image classification
breakthrough with convolutional neural nets
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ImageNet statistics*

§ More than 14 million images have been hand-annotated by the project to 
indicate what objects are pictured and in at least one million of the images, 
bounding boxes are also provided.

§ ImageNet contains more than 20,000 categories with a typical category, such 
as "balloon" or "strawberry", consisting of several hundred images.

Key to its success: large open data resource & challenge aspect

*Source: Wikipedia 2019
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Can this success be translated to clinical 
practice? 

Specific health domain challenges:

§ We need to do to more than image 
perception.

§ We need to collect more than images 
alone (genetics, omics, clinical 
information, exposome).

§ Human biology and pathology is highly 
variable.

§ Data bias is a challenge
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Promises & challenges in health domain
§ DeepMind: “predicting acute kidney injury up to 2 days before it happens” 

(Nature, July 2019).
§ 703.000 patients.
§ 620.000 data points / 3.600 predictive.
(Blood-tests, vital signs, past procedures, prescription, intensive care unit admission)

§ No actual prediction has been made (retrospective study); accuracy is 55.8% and 
depends on time to event: prospective validation needed.

§ Dataset obtained via US Department of Veterans Affairs: 94% male, and biased 
population.*

Some features may be very much dependent on health care system/setting

* See e.g. blog Julia Powles, OneZero
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Population imaging: Rotterdam Study

§ Population study running over 25 years

§ > 15.000 subjects included 

§ Extensive geno- and phenotyping (imaging) available
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Population imaging: design

RISK 
FACTORS:

Genetic

Lifestyle
Smoking

OUTCOME:

Dementia

Stroke

BRAIN:

Atrophy

Lesions

black box
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Can this approach succeed?

Source: De Groot et al, “Stroke 2013 Progress and Innovation award”
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What we currently see visually (as appreciable white matter lesions) is only the 
tip of the iceberg of white matter pathology: searching for QIBs logical next step
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Rotterdam Scan Study ( > 15.000 brain MRI)
library of quantitative imaging biomarkers

Brain tissue

White matter lesions

Brain structures

Microstructure

Incidental findings

Micro bleedings

by the Euclidean path length L yields a mean measure over the
minimum cost path, g Γ̂:

gΓ̂≜
1
L
∫L
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! "
ds: ð3Þ

The local measure can either be dependent or independent of
direction. It is therefore possible to use Eq. (3) to average the
(direction-independent)measures FA andMD over theminimum cost
path. Both these measures are, however, based on the tensor model,
which has shortcomings as discussed before. We prefer a measure
that is not based on a tensor model and use in this proof of principle
study g x; vð Þ = ψ x; vð Þ. Our connectivity measure is the mean cost uΓ̂

which equals:

uΓ̂ =
1
L
∫L
0ψ Γ̂ sð Þ; Γ̂′ sð Þ

! "
ds =

u R;pð Þ
L

: ð4Þ

The local cost function depends on both local anisotropy and
diffusivity and its average over the minimum cost path is therefore a
suitable connectivity measure.We chose to normalize by the length of
the minimum cost path in order to correct for differences in head size
and/or brain atrophy. Fig. 2 shows, for three example slices, the
cumulative costs, path length, and average costs over the minimum
cost paths starting in the right amygdala.

Construction of the mcp-network

To enable statistical analysis of mcp-networks, corresponding
brain regions should be defined in all subjects. We use the publicly
available FreeSurfer software package, which is capable of segment-
ing subcortical structures (Fischl et al., 2004b) and parcellating the
cortex (Fischl et al., 2004a) based on T1-weighted (T1w) images.
The T1w scan is rigidly registered to the b0 diffusion image using
Elastix (Klein et al., 2010). The FreeSurfer segmentation and
parcellation are transformed to DWI space according to the resulting
transformation. The gray and white matter mask, used to restrict the
Fast Sweeping algorithm to the brain, is defined by the FreeSurfer
segmentation.

Additionally, the FreeSurfer segmentation of the subcortical
structures and cortical parcellation define the start and target regions.
In this paper, we use the term connection to refer to an mcp-network
connection between two nodes, or (the trajectory of) the corresponding
minimum cost path. This does not necessarily correspond to a direct
anatomical connection between the two brain regions. Moreover, in an
anatomical connection theminimum cost path runs from start region to
target region, which is not necessarily the same direction as signals are
transported along the white matter path.

Anmcp-network consists of n connections that are weighted by uΓ̂.
As every voxel in the target region has a different uΓ̂,one value needs
to be defined to represent the connection between the start and target
region. We use the value of uΓ̂ of the voxel with minimum cumulative
cost uðR;pÞ. All the minimum cost paths running to the target region
most probably run through the same white matter bundle. Of these
paths, the minimum cost path running to the voxel with minimum
cumulative cost is the most optimal.

Using the uΓ̂ at the representing voxels, mcp-networks are
obtained for the m subjects. All of these mcp-networks are combined
into an m×n matrix of connectivity features for statistical analysis.

Statistical analysis

SAMSCo uses statistical analysis to investigate whether the matrix
of connectivity features contains information regarding connectivity
changes e.g. due to normal aging or neurodegenerative disease. Based
on this matrix, we investigated the prediction of variables such as
subject age using regression, and the classification of subjects into
groups defined by markers of brain tissue degeneration.

Regression
Multivariate regression can be used to predict a particular variable

y, e.g. a disease severity index or subject age, based on the matrix of
connectivity features. In linear regression, the predicted value ŷ de-
pends on the vector of input variables f = f1; f2; :::; fNð ÞT :

ŷ = ∑
N

j=1
fjβj + β0; ð5Þ

with βj the regression coefficients, and β0 the intercept. When the
matrix of connectivity features is used as regression input, the length of

Fig. 1. Schematic overview of the SAMSCo framework for statistical group analysis of structural brain connectivity. Connectivity is established through minimum cost paths (mcp's)
that are constructed using diffusion weighted images. The mcp's run from start to target regions defined by FreeSurfer segmentation and cortical parcellation. The image shows the
mcp's starting at the left putamen and a slice of the corresponding cumulative cost image. Per subject an mcp-network is constructed based on the mcp's and the cumulative cost
over, and path length of, these mcp's. The mcp-networks of all m subjects are combined into a matrix of connectivity features for statistical analysis.
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prediction of disease development in an asymptomatic
population, as differences between subjects in the latter
group are much more subtle. In our study, all persons
were nondemented at scan time and developed dementia
only later. Therefore, our results support the use of shape
as a predictive marker.

The most notable other imaging methods used for
extracting features for dementia classification are based on
voxel-based morphometry (VBM) [e.g., Fan et al., 2007;
Kl€oppel et al., 2008] and cortical thickness [e.g., Desikan
et al., 2009; Querbes et al., 2009]. Cuingnet et al. [2010]
compared these methods of dementia classification, using
a large dataset from the AD Neuroimaging Initiative data-
base. They compared three groups of methods: VBM, cort-
ical thickness measurements and hippocampus volume/
shape based methods. They found that for AD versus con-
trol classification the whole brain methods outperformed
the hippocampus-based methods. However, for MCI-c ver-
sus control classification the hippocampal methods were
competitive with the whole-brain methods. This result
confirms that the hippocampus is one of the regions in the
brain where atrophy is noticeable first in subjects with
dementia.

We are not aware of any work using pattern recognition
techniques to evaluate predictive value of hippocampal
shape on similar data used in our study. There are studies
which use statistical methods (e.g., regression or analysis
of variance) to evaluate predictive value. Csernansky et al.
[2005] and Apostolova et al. [2010] studied hippocampal
shape using comparable subject groups. Their studies
were more descriptive of nature making it impossible to
quantitatively compare their results to our study. We can,
however, qualitatively compare the discriminative direc-
tion obtained in our study to the maps obtained by

Csernansky et al. [2005, Fig. 3] and Apostolova et al. [2010,
Fig. 1]. For the left hippocampus, the discriminative direc-
tion maps presented in Figure 7 appears to match the atro-
phy and significance maps presented by Csernansky and
Apostolova respectively: most influential points are found
in the CA1 and Subiculum subfields. Csernansky also pro-
vides the direction of change, which corresponds with our
results. For the right hippocampus, the similarity between
the studies is lower: there are areas which contribute to
our classification in the CA2 subfield that Csernansky or
Apostolova do not find. This may be partly due to the fact
that the discriminative direction in our work is based on
the classifier that uses all points jointly, rather than the
group differences per point as used by Csernasky and
Apostolova. Also, Figure 6 shows asymmetry in the classi-
fication performance of the left and right hippocampus,
indicating that the right hippocampus might not contrib-
ute much discriminative information to the classifier.

Many studies have shown asymmetry in hippocampal
volume [Karas et al., 2004; Morra et al., 2009b; Scher et al.,
2011], atrophy rates [Morra et al., 2009a; Zhou et al., 2009],
or report differences in the diagnostic value of the left and
right hippocampus [Csernansky et al., 2005; Tepest et al.,
2008]. However, the asymmetry and the direction of asym-
metry are not consistent across studies. It has been sug-
gested that the asymmetry depends on the stage of
dementia; the left hippocampus is affected first by dementia
related atrophy and the right hippocampus follows with a
time lag [Morra et al., 2009b; Thompson et al., 2003, 2004;
Zhou et al., 2009]. In our data, the left hippocampus was
found to be more predictive for dementia, which fits the
suggested pattern for asymmetry; in our subjects, the dis-
ease is in a very early stage, and it is possible that the left
hippocampus is already affected, while the right

Figure 7.
The discriminative direction of the classifier. The colors represent coefficients of the classifier
localized on the hippocampal surface. The posterior probability of developing dementia increases
if the points move in the direction indicated by the colors: blue points further inward and red/
yellow points further outward indicate a higher chance of developing dementia. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Data

The imaging data used in this study was a subset taken
from the Rotterdam Scan Study: a prospective, population-
based MRI study on age-related neurological diseases [den
Heijer et al., 2003; Ikram, 2011]. For 511 nondemented, el-
derly subjects, MRI scans and the age, gender, dementia
diagnosis, and time of follow-up were available.

All subjects were scanned in 1995–1996 on a Siemens
1.5T scanner. The sequence used was a custom designed,
inversion recovery, three-dimensional (3D) half-Fourier ac-
quisition single-shot turbo spin echo sequence. This
sequence had the following characteristics: inversion time
4,400 ms, repetition time 2,800 ms, effective echo time 29
ms, matrix size 192 3 256, flip angle 180!, slice thickness
1.25 mm, acquired in sagittal direction. The images were
reconstructed to a 128 3 256 3 256 matrix with a voxel
dimension of 1.25 3 1.0 3 1.0 mm.

Study participants were followed during a 10-year period.
During this period, they were invited for four cognitive fol-
low-up tests, and the general practitioners records were
tracked for diagnosis of dementia. Dementia screening fol-
lowed a strict two-step protocol [den Heijer et al., 2006]; ini-
tially, participants were cognitively screened with the Mini
Mental State Examination (MMSE) and the Geriatric Mental
Schedule. If the results of this initial screening indicated
possible dementia, a more thorough cognitive testing was
performed for verification. During the study period, 52 per-
sons were diagnosed with dementia. The median interval

between MRI acquisition and dementia diagnosis was 4.0
years with an interquartile range of 4.8 years.

The entire dataset, hereafter referred to as the cohort set,
contained 52 prodromal dementia cases and 459 persons
who did not develop dementia. To train and test a model
independent of age and gender, an age- and gender-
matched subset of 50 prodromal dementia subjects and
150 controls was identified, hereafter referred to as the
matched set. Characteristics of the cohort set and matched
set can be found in Table I. None of the subjects were
demented at the time the MRI scan was taken.

Because memory impairment is the first detectable neu-
ropsychological sign of incipient dementia, we questioned
persons on subjective memory complaints. This was done
by a single question: “Do you have complaints about your
memory performance?” Furthermore, objective memory
performance was assessed using a 15-word verbal learning
task [den Heijer et al., 2006] resulting in a memory score.

To increase the sample size in the matched set, we
selected three unique controls per case; this was possible
for 50 cases. The matching was performed using the fol-
lowing criteria: the gender had to be the same, the follow-
up time of the controls should be at least as long as the
time to diagnosis of the corresponding case, and the age
could not differ more than 1.5 years. To avoid significant
age differences, the mean age of the controls was kept as
close as possible to the age of the case. We verified that
the age matching resulted in no significant difference
between groups with a paired t-test.

Figure 1.

Overview of methods used: (1) MRI scans of the brain were
acquired. (2) In each scan, the left and right hippocampus was seg-
mented. (3) The segmentations were postprocessed. (4) Points were
distributed over each surface, such that points on a different scans
correspond with each other, and were concatenated to create one
feature vector per scan. (5) The dimensionality of the feature

vectors was reduced using principal component analysis. (6) A Sup-
port Vector Machine classifier was used to predict dementia devel-
opment for each scan. Step (5) and (6) were performed in a cross-
validation manner (for a colored delineation in the figure, refer to
the web version of this article.) [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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White matter tract segmentation

Tractography and atlas-based segmentation 
Minutes to multiple hours

CNN network: 0.5s per tract
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Clinical decision support
Quantib® ND*

Reference imaging 
biomarker curves from 
5.000 individuals of the 

population-based 
Rotterdam Scan Study

*FDA cleared and CE marked

Courtesy: 
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Totally new imaging biomarkers
Convolutional Neural Network architecture for brain age prediction (trained on 5865 images, tested on 2353)

“biological” brain age

Wang et al. PNAS 2019
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Kaplan-Meier curves for new biomarker 
(delta brain / calendar age)
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Oncology: radiomics hypothesis:

Radiomics (Imaging) Data

Clinical Data

Genomic Data

Slide courtesy: Philippe Lambin

There exists a correlation between medical image features and underlying biological information
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Oncology: radiomics pipelines

Starmans et al. British Journal of Surgery 2019
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1p/19q Mutation in Low Grade Glioma

Goal Predict 1p/19q genetic mutations in 
81 patients

Ground Truth PA

Modality MR (T2, DWI)

Discovery Two-class: co-deleted vs non co-
deleted

Van der Voort et al. Clinical 
Cancer Research 2019
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Radiogenomics: predicting genetic mutation 
status from non-invasive imaging data
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BEYOND IMAGING

22
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Risk factors:

Genetic

Blood pressure
Smoking

…..

Brain changes:

Hippocampal 
volume

?
Population imaging genetics
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Imaging genetics: gaining insight in relation genetic liability, 
environmental factors and imaging phenotype

Roshchupkin et al. Neurobiology of ageing
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Neural Network - KEGG Pathway

Genes

DNA (1 200 000 SNPs)

Local pathways 
Global pathways 

Prediction

1,200,000 SNPs
to 21,390 genes
to 390 local pathways
to 43 pathways
to 6 global pathways
to 1 outcome
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Future of imaging genetics

Holy grail: find  phenotype = f (genotype, environmental factors)

Current approaches: mostly massive number of linear regressions 

Promises in:
• Larger datasets
• Machine and deep learning for learning more complex relations

Challenges:
• DL/ML cannot straightforwardly be applied (heterogeneous data, biological variability)
• Modular approach, integrating prior knowledge with DL

27
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Requirements successful introduction AI

• High quality data to train algorithms using state of the art algorithm 
optimization methods

• Clear definition of tasks and seamless integration into the workflow

• Proper validation strategies:
Many promising algorithms may not function as well in clinical practice as reported in literature

§ Evaluation has been performed on retrospective data, often one or limited number of centers

§ Issues: data bias, lack of generalizability

28

Data driven precision health requires
health data infrastructure

Taking individual variability into account to promote health, 
prevent & optimize diagnosis, prognosis and treatment

Utilizing our rich data resources and AI 
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FAIR data and
distributed learning
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Next generation validation strategies

Don’t assume, assess!
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MICCAI – ACR / RSNA / ESR collaboration
§ AI use cases
Clinically relevant, ethical and effective 

§ Challenges
Good quality training data & objective performance evaluation
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Recht et al. European Radiology 2019

Joint effort required!
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SPEED-UP BY COVID-19

35

December 
17, 2020

36

• The outcome of tomorrow’s COVID-19 patient is strongly determined 
by having access to the data of today’s patient
• To collect and find the right data, to make them accessible, and to 

reuse them is non-trivial
• Currently many data collection initiatives worldwide 
• Health-RI provides overview of initiatives and provides services & tools 

and with clinical partners builds Dutch covid database of imaging and 
clinical data for development and objective validation AI algorithms

36

“During this epidemic and in earlier 
occasions, we have seen severely 
suboptimal data management and 
data reuse.”

Ensure that the WHO-CRF(s) and 
other input forms for Corona data 
(and later viral outbreaks in 
general) are properly mapped to a 
machine readable (RDF) format, 
so that any stakeholder can create 
input forms that lead to the 
resulting data being a machine 
actionable (FAIR) digital objects.
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Towards a national COVID-19 
observational data portal
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NvvR-Health RI Covid-19 imaging database 

December 
17, 2020
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XNAT project per 
upload center

Curated and merged 
XNAT projectCTP

CTP

Final curation by
Health-RI experts

Harmonization, curation & pseudonymisation by local expert

Harmonization, curation & pseudonymisation by local expert

UMC's & STZ's
Other 
peripheral 
hospitals

SURFfilesender (with tokens 
given by UMCs)?

XDS network for clinical 
data? Might already be in 
place for some regions.

Missing on left:
Usage of images (governance, 
…)
PODIUM for requests for 
closed datasets?

Missing on right:
Adding clinical data - EPDs ontsluiten (minimale 
dataset - WHO covid dataset)
Procedures for regional hospitals

Processing agreements?
Regional hospitals with UMCs / 
STZs?
UMCs / STZs with H-RI?

= NVvR Data Access Committee/Policy

Research 
Specific 
Projects

TraIT Health-RI

Clinical data in CASTOR
- Extension to existing CASTOR AUMC initiative?
- Using WHO standard COVID forms
- Extending with radiology specific parameters

?

NVvR Consortium
- Consortium agreement
- Processing agreements
- Consent forms
- Data Access Policy
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Linking to international Covid data 
initiatives

Linking to European Covid-19 data portal: https://www.covid19dataportal.org
§ Coordinated by ELIXIR and EMBL-EBI
§ Health-RI connected to Covid-19 data portal initiative via ELIXIR-NL and EOSC-LIFE

December 
17, 2020

40

• Federated national EGA to
ensure rapid sharing of 
Covid-19 host omics –
phenotypic data across
Europe

- FAIR metadata
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Future of data-driven health

41

Data along full life cycle

42

Infrastructure to make more and 
richer data accessible
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State of the art machine learning on rich data 
(AI) to support prevention, early disease 
detection, improved diagnostics & prognostics

Distributed analysis for 
deeper insights
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Future of healthcare is a learning 
healthcare system
What is needed?

• Work on higher quality and better accessible 
(image) data for science and innovation

• Implement FAIR data, distributed access and 
Open Science

• Create ML/DL challenges for important tasks

• Prospective validation for responsible 
introduction AI
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Thank you
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