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0 Introduction

The usefulness of mathematical models based on shallow water equations (SWE)
is generally recognized for hydraulic problems in civil engineering. Mathemat-
ical models based upon SWE are applied not only to estimate water levels but
also for the calculation of detailed flow patterns. Not only should the numer-
ical method be accurate but it must also be stable. This stability should not
be obtained at the cost of numerical dissipation. Many existing methods pro-
duce disappointing results because either instabilities are obtained or numer-
ical dissipation causes very inaccurate results, especially if the flow con-

tains eddies.

This work contains a step-by-step description of the construction of a finite
difference method (FDM) for the approximation of SWE. A robust, yet accurate,
FDM is constructed which is applicable to a wide range of practical problems
of SWE in civil engineering.

The first chapter discusses general notions like stability and convergence.
Other aspects such as wave propagation properties and the existence of spuri-
ous roots are also important. The understanding of FDM behaviour is enlarged
by considering boundary value problems as well as initial value problems. It
is sufficient for present purposes to consider only linear equations with one

dependent variable.

The second chapter is devoted to special methods for approximating a simple
advection equation. These methods can be implemented for the approximation of
the advection operator of SWE. FDMs which are accurate with respect to time-
dependent problems are not necessarily accurate when they are applied to
steady state problems. For practical applications a FDM must be accurate in
both cases.

The third chapter describes several FDMs for SWE that are well-known from the
literature. To distinguish the differences, it is sufficient to consider only
linearized and homogeneous SWE. The important advantages of so-called "stag-
gered grids" will also be explained.

The most efficient existing FDM for practical problems of SWE in civil engi-
neering seems to be the Leendertse method. Moreover, practical experience with

this method is extensive. Yet this method has a disadvantage concerning linear



-

stability with respect to the advection operator. This chapter shows how this
method can be stabilized, so that the efficiency is maintained by application
of the methods proposed in chapter 2. A linear stability analysis of the
resulting scheme is given.

Most of the schemes described in this chapter are of the ADI-type. For prac-—
tical applications these schemes often yield large inaccuracies for very large

timesteps.

In chapter 4 it is shown how one of the FDMs which are proposed in chapter 3
can be extended to an approximation method for nonlinear SWE.

A few aspects of nonlinear FDMs will be illustrated by simple examples.

For practical applications the boundary treatment is very important.

In this chapter the boundary treatment is considered from a practical point of
view. For example, water levels or velocities can be prescribed at open bound-
aries such that almost non-reflective boundary conditions are obtained not
requiring so-called "Riemann invariants".

This chapter also contains a description of the numerical treatment of tidal

flats.

In chapter 5 a few examples will show that the FDM proposed in chapter 4 is
applicable to a wide range of practical problems. The approach is purely
numerical, i.e., model adjustment is considered to be beyond the scope of this
work. This chapter shows, for example, that for complicated flow patterns the
stability of the model is maintained even when the viscosity is very small. It
also demonstrates the tidal flat procedure and the sensitivity of the model to
variation of several model parameters of non-slip boundary conditions versus
perfect slip boundary conditions. A practical steady flow problem is de-
scribed. All descriptions in this chapter are brief since chapter 5 is meant
as an illustration of the applicability of the FDM.

Chapter 6 contains general conclusions.



1 Preliminary Remarks on Linear Equations

1.0 Introduction

Section 1 of this chapter treats basic aspects of the numerical approximation
of differential equations such as consistency, convergence and stability. The
treatment will be based upon linear equations with a time-space domain that is
one-dimensional in space. To explain the relevant concepts however this is not
a real limitation.

Section 2 describes a few methods for the determination of stability condi-
tions of finite difference schemes. Examples are given both for ordinary
differential equations (ODEs) and for partial differential equations (PDEs).
Section 3 deals with the accuracy of numerical approximations of initial value
problems of ODEs and PDEs in terms of phase and amplitude errors.

Section 4 illustrates some aspects of the numerical approximation of boundary
conditions concerning the relation between the order of consistency and the

order of convergence by means of a simple example.

1.1 Definitions

This section treats the concepts of consistency, convergence, and stability of
approximation methods for differential equations. The definitions are based
upon the work of Godunov and Ryabenki [4].
A differential equation will be written in the symbolic form given by:

L alx,/t) = f(x,t), X960, 0 eR, t6{o,T] (1.1-1a)
with boundary conditions*:

1 blx,t) = g(x,t)y (x,e) 8 5 (1.1-1b)

where:

L and 1 denote differential operators and

* Initial conditions are considered as a special type of boundary conditions.



I' is the boundary of Q x [0,T]

The system of equations (l.l1-1) is assumed to have a unique solution u(x,t)
which belongs to a normed linear function space U and for which the following

relation holds:
e o)l < e el g+ c,llolly (1.1-2)

where F and & are normed linear function spaces, C] and Cp are constants

and le 1ol 1l ¢
From this relation it follows that (l.l1-1) is a well-posed problem in the

denote norms in the spaces U, F and &.

sense of the definitions given by Kreiss [12].

Instead of solving (l.1-1) exactly, we want to approximate this equation by a
"finite difference scheme'". For this purpose we define a grid. The grid con-
sists of the Cartesian product of a spatial grid QA that is composed of a set
of points with coordinates x=mA, m€Z and a time grid TA that is composed of a
set of points with coordinates t=kt, k€Z.

We suppose that 1t is a function of A such that:
lim t(A) = 0, ©(0) = O (1.1-3)
A+0

for example t=rA were r is a constant.

The boundary of QA x T, is denoted by FA.

A
At this point we introduce normed linear function spaces UA’ FA and ¢A with
norms || . | o ol IF ll@ . The elements of the spaces
UA and FA ar% defineé on Q % T while the elements of @A are defined on F .
A(A) £

These elements are denoted by u (A). They will be called "grid

functions".
The equations which approximate (l.l-la) are denoted by:
LAu<A) = £(8) (1.1-4a)

where LA is called a "finite difference operator" with domain UA and range

F .
A



The boundary conditions given by (l.l-1b) are approximated by:

lA“(A) 2 0(A) (1.1-4b)

The domain and range of 1, are given by U

A A and ¢A respectively.

In order to obtain a useful approximation of (1l.1-1) by (1.1-4) the approxima-
tion must be:

(1) consistent (of order 1 at least)

(i1) convergent (of order 1 at least)

(ii1i) stable.

For the definition of these concepts we follow Godunov and Ryabenki [4].
Definition (1l.1-1) (consistency)

The finite difference scheme given by (l.l-4a) is a consistent approximation

of order n of (l.1-la) if the following relation holds:

A
Iy taly = {sbyllp +1€D (e}l < o
where Cj denotes some constant,

[.]A is an operator that relates elements of the space U to elements of the

space UA’ and {.}A is an operator that relates elements of F to elements

of FA'
Definition (1.1-2) (convergence)

The finite difference scheme given by (l.1-4) is convergent of order n if the

following relation holds:

II[“]A = u(A)IIUA . c“An

where C, denotes some constant not depending on A and [.], is defined by
definition (l.1-1).



Definition (1.1-3) (G-R stability)

The finite difference scheme given by (l.1-4) is said to be G-R stable if the
following relation holds:

a1y < Ryl E@ o+ k6@l 4 v a
UA 3 FA 4 @A’
where K5 and K, are numbers not depending on A.

This definition is equivalent to the assumption that the inverse operator
related to the finite difference scheme given by (l.1-4) is uniformly bounded
as A » 0, cf. Godunov and Ryabenki [4], p. 105.

It is further to be noted that also for the approximation of the boundary
conditions consistency can be defined according to definition (1l.1-1), see

Godunov and Ryabenki [4].

The stability definition given by definition (1.1-3) is by no means the only
possible stability definition. A survey of stability definitions is given by
Van der Houwen [8]. For hyperbolic problems, see also the stability definition
as given by Kreiss et al. [13].

From a practical point of view, the so-called B-H-K stability as treated by
Van der Houwen [8] deals with an important aspect of the behaviour of finite
difference schemes. To explain this type of stability definition and its
difference with respect to G-R stability, we rewrite the finite difference
scheme given by (l.1-4) as:

k+1

u = RAuk + 1 pk (1.1=5)

where RA is an operator with its domain and range in UA. This operator relates

to the values of u(A) at time level t=kt the values of u(A) at time level
t=(k+1)t, cf. Godunov and Ryabenki [4]. The values of pk depend on the bound-

ary conditions and the right-hand side of the finite difference equation.

Under the conditions that



k a) )
W e ll< Lyl £ ”FA+ Lylle H<1>A

and

(1) || < Ly )1£@ Bl o s,

stability in the sense of definition (1.1-3) is equivalent to the relation:
”Rk”<L k=1 T/%, VA
A o! Ry ’
where L,, L}, ..., L4 are constants not depending on A.

In other words G-R stability implies that RAT/T is a uniformly bounded opera-
tor if A+0 and thereby 1+0 with T constant.

B-H-K stability as defined by Van der Houwen [8] concerns what happens
with IIRAk ”if T + » while A, and thereby 1, are kept constant. In a somewhat
simplified form B-H-K stability is defined by:

Definition (1.1-4) (B-H-K stability)

The finite difference scheme given by (1.1-5) is B-H-K stable if

e m,

Lim || R
Treo 4
while A and t are kept constant.

M, denotes a constant not depending on T.

From a practical point of view it is convenient if a finite difference scheme
is stable in the sense of both stability definitions of this section, although
the latter stability definition is in fact meaningful only if the relation
given by (1.1-2) also holds if Ts=. For tidal problems, the final goal of this

work, this seems to be a reasonable assumption, however.

Finally we would like to mention that G-R stability implies convergence for

consistent finite difference schemes as is proven by Godunov and Ryabenki [4].



1.2 Tools for the determination of stability conditions

To be useful in practice, finite difference schemes need to be consistent,
stable, and convergent.

Consistency is generally easy to check by means of Taylor series expansions.
Stability, however, and thereby convergence, often implies a complicated
analysis. For a practical simulation model, such an analysis is a necessity
because ignorance of the stability conditions could lead to meaningless re-
sults. This section describes a few tools for the determination of the stabil-

ity condition of a finite difference scheme.

In general we consider as very important two aspects of a method for the

determination of stability conditions:

(i) The method should be fairly simple to apply.

(ii) It should not grossly overestimate the '"true'" stability conditions. This
might lead to very small timesteps, which, in practical applications im-
ply costly and thereby not very competitive computing codes.

In view of this last remark we generally prefer methods that yield only neces-
sary conditions to methods that produce only sufficient conditions. Conditions
that are both necessary and sufficient are of course always preferable but are
usually hard to come by. The test problem for which the stability study is
carried out is almost always a simplification of the problem that is to be
solved in reality. Therefore stability always has to be verified by computer

calculations with the real model.
Three methods are often applied for the calculation of stability conditions:

(i) The energy method
After the choice of a suitable norm the condition given by definition
(1.1-3), or a similar definition, is checked by direct estimation of
IIu(A)IIU . The tools for this method are the triangle inequality,
summationAby parts etc.
In general only sufficient conditions are found by this method. Boundary
conditions are included, and nonlinear problems can also be studied. For
nonlinear problems, nonhomogeneous boundary conditions are difficult to

study. Examples of this method are given by Richtmyer and Morton [21],



Cuvelier [1], and Temam [27]. A simple example of this method is also
given in section 4.l1. The disadvantage is that, while providing only
sufficient conditions, this method often causes complicated analytical
problems for simple finite difference schemes, see also the discussion

of Roache [22], p. 48.

(ii) Spectral method
For this method stability is considered as the boundedness of the opera-
tor RAk where R.A is defined by (1l.1-5).
As already mentioned, stability in the sense of definition (1.1-3) is

equivalent to:
I & X (1.2-1)
Ry < Ly, k=1,...T/7(a), ¥ & s
where T is constant and lim t(A) = 0, t(o) = 0

A>0

For PDEs the behaviour of RAk is studied by the definition and the

calculation of the spectrum of a family of operators {RA}. see Godunov
and Ryabenki [4], p. 188.

(i1i) Heuristic stability theory
This stability analysis is treated by Hirt [7] and in a somewhat modi-
fied form by Warming and Hyett [26]. The method is based upon the fol-
lowing idea:
let the finite difference scheme given by (1.2-1) be an nth order con-

sistent approximation of the following equation.

Lu = £, j (1.2-2a)
with boundary conditions:

lu = ¢, (1.2-2b)
and a n+lth order consistent approximation of another equation

L'u = f', (1.2-3a)



with boundary conditions:
1'u = ¢'. (1.2-3b)

Then for the stability of (1.1-5) not only should (1.2-2) represent a well-
posed problem, i.e. its solution should fulfil the condition given by (1.1-2),
but (1.2-3) should also represent a well-posed problem.

There is no formal theory for the justification of this method, but the sim-
plicity of its application, especially for semi-discrete problems, makes it an

attractive method.

In this section we first treat the calculation of stability conditions for
ODEs and then for PDEs.

a. Ordinary differential equations

For the numerical approximation of linear differential equations often linear
finite difference equations of order £ in the following form are constructed
(linear multistep methods):
+ -1 k+o~ k
yl Ry yl it 1+...+-y°uk =6, k=K, ktl,ees (1.2-4)

where yj, j=0,1, «e., & are constants independent of k and

y"#O,yo#O.

As is well known, see, e.g., Lambert [15], the general solution of (1.2-4) is

given by:
& ol K, .k
e aah o R G S e, S (1.2=5)
i=1 i i

where gk denotes a particular solution of (1.2-4) and Pi(k) are polynomials in
k. The degree of Pj(k) is Py_1» With py the multiplicity of the correspon-
ding ri, while ri are the roots of the corresponding "characteristic equa-
tion", see e.g. Lambert [15], given by:

ylrk s Y£-1r£-1+ cost yo =0 (1.2-6)




L denotes the number of roots of (1.2-6), from which it follows that:
Sinlpdagy (1.2-7)

The coefficients of the polynomials Pi(k) are determined by initial or bound-

ary conditions.
(1.2-4) can be denoted also as:
k+2 k+1

R T ReR ) ]T = R[uk—l‘u,...,uk]T + [Qk,O,...O]T (1.2-8)

where R is given by:

r 2=1 2 =2, R o, L
Al - Sy s 2 = -y /v
1 0
R= - -
1 0
. e

The eigenvalues of R are determined by the characteristic equation given by
(1.2-6).

The general solution of the homogeneous part of (l.2-4) or (1.2-8) can be
obtained by superposition of terms Gk, given by

T - k¥ ’1k (1.2-9)

where k is a natural number such that 0 < k < s these terms are usually

referred to as the "normal modes" of (1.2-3) or (1.2-8).

The stability definitions as defined in the theory of approximate solutions of
ODEs relate to the eigenvalues of the operator RT that is obtained after
application of the approximation method under consideration to a simple "test

problem", given by:



u =%\u (1.2-10)

The general formulation of a linear multistep method of order & for the ap-

proximation of (1.2-10) is given by:

X ) 5
% aj uk+j =T\ I Bj uk+j (1.2-11)
j=0 §=0

As for (1.2-4), the general solution of (l1.2-11) is given by:

L
= T P(k) K (1.2-12)
tal i 2 ) ¢

where ry, i=1,...,L, L < %, are the roots of the characteristic equation given

by:
n (r,At) = plr) = At ofr) = O, (1.2-13)
where:
e
p(r) = & «a rJ
3=0
£
o(r) = ¢ srj.
j=0

The polynomials p(r) and o(r) are referred to as the first and second charac-

teristic polynomials, see, e.g., Lambert [15].

Definition (1.2-1) (zero-stability)

The linear multistep method (1.2-11) is said to be "zero-stable" if no root of
the equation p(r) = 0 has a modulus greater than 1, and if every root with

modulus 1 is simple.

Zero stability is a necessary condition for G-R stability because G-R stabili-
ty of consistent linear finite different schemes ensures convergence, see Van
der Houwen [8] p. 12, while zero stability of consistent linear multistep

methods is equivalent to convergence, see Lambert [15] p. 33.



Definition (1.2-2) (absolute stability)

The linear multistep method (1.2-11) is said to be "absolutely stable" for a

given T\ if, for that tA, all roots rj of (1.2-13) satisfy:
|r1| Gl 280G 1uvag i

Absolute stability is a sufficient condition for B-H-K stability (def. 1.1-4).
Note that if the definition had required |r1[< 1 it would have been a neces-
sary condition for B-H-K stability. This shows the close relation between
absolute stability and B-H-K stability.

In general, absolute stability does not imply zero stability and vice versa;
therefore they will both have to be checked. For linear ODEs their verifica-

tion is comparatively simple.

The treatment given here of linear multistep methods has been rather limited.
More detailed information on these subjects, including Runge Kutta methods, is
glven by Lambert [15], Gear [3], Lapidus and Seinfeld [17], Henrici, [6] and,

Van der Houwen [9].
b. Partial differential equations

So far we have studied the stability of finite difference schemes by estab-
lishing the eigenvalues of an operator R as defined, for example, by (1.2-8).
We have only studied a scalar ODE, for systems of ODEs however, the analysis
is not essentially different, cf. Lambert [15].

The analysis of the stability of finite difference schemes for PDEs, however,
involves a fundamentally different aspect from the stability analysis of

finite difference schemes for ODEs.
To show this we consider a simple hyperbolic PDE given by:
w * g P, % €:[0,1]; t.€ [0,T] (1.2-14a)

t

u (0,t) =1, u (x,0) =0, x>0 (1.2-14b)



For the approximation of this equation we define a spatial grid consisting of
M+l points e T mAx, Ax = 1/M.

For the approximation of the spatial derivatives we use first order "upwind"
differencing. The approximation of the derivatives in time is postponed. This

yields a so-called "semi-discrete" set of ordinary differential equations

given by:
(um)t + (um - um_l)/Ax o 50, m. sk e, M (1.2-15a)
uo(t) =1, u €0 T 0y mea L e (1.2=15b)

This method does not need a special boundary scheme at m = M.
Equation (l.2-17a) can be rewritten as follows:
M, =hia o 0)=s 2? (1.2-16)
where
u = [uo, Ups eees uM]T

+1/A% -1/Ax
A= +1/A% -1/Ax%

+1/Ax% -1/A%

M —

R P

The eigenvalues of A are given by 0 and -1/Ax.

The approximate integration in time is accomplished by the explicit first
order Euler method. For the definition of the time grid, in the interval [0,T],
we choose K+l equidistantial points such that 1t = T/K, and define the follow-
ing finite difference scheme:



u:+1 & umk -r (uﬁ - u:_l), kmiQ) wee K= 1, el s, M (1.2-17a)

o So1, medops, S, mB ek, apm ARG (1.2-17b)

o m

where r = t/Ax

Looking at the first characteristic polynomial of (1.2-17a) we immediately see
that the method is unconditionally zero stable.
This process, in which discretization in space is followed by numerical inte-

gration in time, is generally referred to as the "method of lines".

First we assume (1.2-17) to be an approximation of (1.2-16) and we study the
limiting case 1 + 0 while we keep Ax constant.
Second we assume (1.2-17) to be an approximation of (l.2-14) and we study the

limiting case Ax » 0 while we keep r constant.

If we construct the operator R in the sense of (l.2-1) under the first as-
%

sumption, then we obtain:

0
r(t) 1 =-2(%)
R = \ \ (1.2-18)

r(t) 1 =r(t)

The eigenvalues of this operator are given by 0,1 - r(t). Absolute stability
is ensured if 0 < r(t) < 2 or:

T/Ax € 2 (1.2-19)

If we construct the operator RA for the second assumption then we obtain:
x

0

r 1-r
R, = \ \ (1.2-20)
T 1-r



The eigenvalues are given by 0, l-r, which means that B-H-K stability is en-
sured if the condition given by (1.2-19) is fulfilled. For G-R stability,
however, the true stability condition, see Godunov and Ryabenki [4] p.190, is
given by:

AL (1.2-21)

This condition can be found also by the "Von Neumann condition', see Richt-
myer and Morton [21], p. 152.

The reason for the differences between the conditions given by (1.2-19) and
(1.2-21) is that for ODEs R has a fixed size and for B-H-K stability the size
of R is assumed to be fixed while for G-R stability the size of RA tends to

infinity, and if r > 1 some elements of Rk

Ax tend to infinity as well.

From this example, taken from Godunov and Ryabenki [4], it follows that the
"matrix method" as described by Mitchell and Griffiths [19] and used for
example by Praagman [20] does not always yield sufficient conditions for G-R
stability. The matrix method does not include the Von Neumann method; in fact,
by the matrix method B-H-K stability is verified.

Observations of this kind have led Godunov and Ryabenki [4] to introduce the

Ax}. This is the
aggregate of operators RA formed by letting Ax assume all possible values of
%

concept of a spectrum of a family of operators denoted by {R

the grid size. It is assumed that Ax can be arbitrarily small. The spectrum

of {RAx} is defined as:

Definition (1.2-4)

The complex number A denotes a point in the spectrum of the family of opera-
tors {RAx} if, for any positive €, we may choose Axo (Axo > 0) such that for
any Ax, 0 < Ax < Axo, there exists a vector u (from the appropriate

space UAx) which satisfies the inequality:
IRy = u fl<e flull

The aggregate of all such numbers A forms the spectrum of the family of opera-

tors {RAx} .



After this definition Godunov and Ryabenki [4] prove a very important asser-

tion:

Let one point Ao in the spectrum of the family of operators {RAX} lie outside
the unit disk in the complex plane (| kol > 1). It is then impossible to
choose a constant C such that for all Ax the inequality

k
IRy Il <c

is satisfied, where k assumes all integer values from 0 to k,(Ax). It is
assumed that ko(Ax) + o if Ax > O.

It is also shown by Godunov and Ryabenki [4] that this spectrum is not equiva-=
lent to the aggregate of eigenvalues of each operator RAx by means of an

example similar to the one already given in this section.

We will now demonstrate the calculation of the spectrum of {RAx} as given by
(1.2-20).
The numerical boundary-initial-value problem is split into a number of sub-
problems.
The first one, the so-called Cauchy problem, see Kreiss [10], assumes the

spatial domain to be infinite, i.e. = < x < =, or:

k+1 k k k
M o sl (um - um—l)’ e OF TR Ly £

(1.2-22a)

This problem is usually referred to as a half plane problem and is a purely
initial value problem.

The other two problems are quarter space problems given by:

k+1 k k k
u =u -1 (u =-u )
m m m m—1
o L R e & (1.2-22b)
uk = 0, (1.es 0 Ex k™)
o
and: -
u:“ . “:. - (k- wl )y mm ewey =L 0, 1, ey M (1.2-22¢)

(1.e¢ == < x < 1)



The spectrum of {RAx} for this problem consists of the union of the spectra of
each of the families of operators that belongs to each subproblem given by

(1.2-22 a,b,c). The proof of this is given by Godunov and Ryabenki [4].

To calculate the eigenvalues of each of the three subproblems we assume a
solution of (1.2-22) to be of the following form.

~k k2

e e x uy (1.2-23)
The Godunov-Ryabenki condition is said to be satisfied if none of the three
subproblems has nontrivial solutions in the form (1.2-23) for which ' A |> 2

see Kreiss et al [13].
This is a necessary condition for G-R stability.

To verify this condition (1.2-23) is substituted into (1.2-22).

This yields the so-called "resolvent equation'" given by:

~

A - um‘— r(um - um—l) (1.2-24)

This resolvent equation is also a finite difference equation for which the

general solution is given by:
=az" (1.2-25)

where a is a constant depending on boundary conditions and z is the root of

the characteristic equation of (1.2-24) given by:
Az =z -r (z=1) (1.2-26)

By substitution of (1.2-25) into (1.2-23) we obtain:

ik
u, = a o §1.2=17)

Solutions in this form are called the '"normal modes" of (1.2-22).



Because the possible solutions of each of the three subproblems of (1.2-22)
are bounded at t = 0 it follows that for the verification of the G-R condition

the following restrictions for z are to be taken into account:

For (1.2-22a): le =1, 1es 262, 0Ca< 2% (1.2-28a)
For (1.2-22b): |z| ikl (1.2-28b)
For (1.2-22c): J=:| »1 (1.2-28c)

If these restriction of lzl are taken into account, the verification of the G-
R condition yields (1.2-21) as a necessary condition for stability (by stabil-
ity we mean G-R stability unless another kind of stability is specified).

In Kreiss [10], Kreiss [11] and Kreiss, Gustafsson, and Sundstrdm [13] a simi-
lar stability analysis is presented for hyperbolic problems in general with
variable coefficients. In these articles not only are necessary conditions
derived but also sufficient conditions. Strikwerda [24] gives a similar analy-
sis for the method of lines.

In fact, this type of stability analysis is always concerned with how to
reduce the stability problem to a problem that is simple to deal with. It is
done by the construction of the '"resolvent equation", which is obtained by
substitution of a normal mode into the finite difference equation. The origi-
nal problem is split into several quarter space problems and one purely ini-
tial-value problem; the so-called Cauchy problem, which can be treated with
Von Neumann analysis. Even though they are meant to be simple, the quarter
space problems are often very difficult to deal with. They have various ana-
lytical problems with high order, complex polynomials. For simple problems the
insight into the possible behaviour' of a numerical solution can be greatly
enlarged by posing a purely initial-value problem and several boundary value

problems. We will illustrate this later on by an example.

The treatment given in this section on the stability of approximate solutions

of initial boundary value problems has been very brief and incomplete.



Because our main purpose is the construction of a stable method for the
approximation of the shallow water equations by which practical problems can
be solved, a thorough treatment is well beyond the scope of this work. The
interested reader should read the articles by Godunov and Ryabenki and Kreiss

mentioned in the references.

1.3 Dissipation and dispersion properties of finite difference schemes for

initial-value problems

Up to this point we have dealt only with stability problems. Stability, how-
ever, is only one of the properties that a good finite difference scheme
should have. To make a final choice for a numerical method for the approxi-
mation of a differential equation, it is necessary to study other properties.
One of the important aspects of a finite difference scheme is accuracy, which
concerns the amount of computational labour that is needed to obtain a numeri-
cal solution within prescribed error bounds; or, equivalently, it concerns the
size of the error that can be expected at a prescribed amount of computational
labour.

Qualitative expressions for the accuracy of a numerical method are the order
of consistency or the order of convergence, more quantitative expressions
however describe the global error of a numerical method in terms of phase and
amplitude errors. For the numerical solution of hyperbolic PDEs this is a
general approach, cf. Roberts and Weiss [23], Kreiss and Oliger [14] or Roache
[22]. Also in the case of numerical methods for ODEs this approach is some-
times adopted, cf. Lambert [16].

In this section we study the phase and amplitude errors for numerical approxi-
mation methods that are constructed by discretizing a PDE separately in space
and time. For this type of method, the phase and amplitude errors of the
spatial and time discretization can be studied separately; in this section
phase and amplitude errors of numerical integration methods in time are stud-
ied first and then these errors are studied for spatial discretizations. The
study will be based upon the same normal mode analysis that has been applied
to study stability. Other properties that are important for the final result
of a numerical method such as spurious modes, relative stability, and stiff

stability will be described briefly.



a. Ordinary Differential Equations

The phase and amplitude errors of a numerical method are defined by applica-
tion of this method to a simple test problem. The one we use for the ODEs is

given by:

u . A n (1.3-1a)

with initial condition given by:
u(o) = uo (l.3'lb)

The solution of (1.3) is:

u(e) = uge (1.3-2)
If we assume that (l.3) is approximated by a linear one-step method then we

obtain a numerical solution given by:

k k (1.3-3)

Instead of restricting the continuous solution to a discrete function space,
as for the definitions of consistency and convergence, we extend the discrete
solution to a continuous function space such that we obtain a function

u'(t) = u, ek't, for which the following relation holds:

'
u' (kt) = uoek 05 . uk (1.3-4)

Obviously A't is given by:

A't = 1n rl (1.3-5)

At this point we define the so-called propagation factor, cf. Leendertse [18],

by:

P (A,t) = E(K'"A)t (1.3-6)



The amplitude of this factor is called the amplitude factor and the phase is
called the phase error. If, for Im A > O, Im (A'-A) < O, one speaks of a lag-
ging phase error; Im (A'-A) > O implies a leading phase error.

For later reference the figures (1-1), (1-2) and (1-3) show contour plots of
amplitude factors and phase errors per timestep, plotted within their regions
of stability in the 1A plane of the following methods:

Figure (1-1) Euler explicit : rl =14 1A
Figure (1-2) Trapezoidal rule : = (1 + tn/2)/(1-1\/2)

Figure (1-3) Predictor-Corrector: r, = 1 + 7\ + % (Tx)z

1
These methods are often used for the approximation of the time derivative of
partial differential equations. From figure (1-2) it follows that the trape-
zoidal rule has no amplitude errors at the imaginary axis, and the phase
errors are lagging. For wave problems the eigenvalues are quite often near the

imaginary axis.
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Figure (1-1) Phase errors and amplitude factors of Eulers explicit method



aaaaaaaaaaaaaaaa

Il

U
/////////////// ; = - 0



- S

Im
r3
-2
'
N pr22202y,,
N fﬁtﬂ!”ﬁ%%%% relative amplitude
= , factor per timestep
==: 0.5 - 0.75
Il : o0.875 - 1.0
////: 1.1 = 1.2
l W 1.5 -2
2 iy 9 iR 8: 3.0- 1000
e
TA plane
Im
r3
phase error per
-2 timestep
=—: -1 - =0.5n
“u‘ $ =0.3n - -0.1x
ZZ: 0 - 0.1n
/- .
$§§§: 0.3n = 0.5n
§§g§: %= l5m
i
Re

Figure (1-3) Phase errors and amplitude factors of the second order predictor
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So far we have only treated one-step methods. For linear multistep methods of
order greater than 1 the quantitative behaviour becomes a little bit more
difficult to describe because the number of normal modes of the numerical
method exceeds the number of normal modes that build up the exact solution.
Therefore we should mention an important notion from the theory of approximate

solutions of ODEs: If we consider the polynomial equation given by (1.2-13):
p (r) = Ao(x) =0 (1.3=7)

which is the characteristic equation that belongs to a linear multistep method

of order &, as given by (1.2-11); then for exactly one root, rj, the following
relation holds:

lim £, (A7) =1 (1.3-8)
A0

This relation must hold because of consistency, cf. Lambert [15]. The root T,
is referred to as the "principal root". The other roots of (1.3-7) are "spuri-
ous roots".

For this principal foot the phase and amplitude error can be defined according
to (1.3-5 & 6). In this case the total error is not determined completely by
the propagation factor, the spurious roots also contribute to the error of the

numerical solution.

Consider, for example, a linear two step method. Its general solution is given

by:
uk =icj rlk +cy rzk (1.3-9)

where c) and cy are constants determined by the initial condition and a
"starting value", cf. Lambert [15].

If ¢; = u and ¢ | [r | > [c,] [ty + then the propagation factor is still

the most important factor for the global error.

Another important concept in the theory of the approximate solutions of ODEs
is referred to as "relative stability". This means that for a linear multistep
method with stepsize % for all spurious roots, Toseees Tpy L < 2, the follow-

L
ing relation holds:



ey bt bl 152, woeid (1.3-10)

In practical application one usually deals with approximate solutions that are
built up by superposition of a large number of normal modes, especially if one
integrates as large a system of ODEs as can be obtained by the Method of
Lines, for example. For the exact solution, normal modes, characterized by
fairly large negative exponentials, disappear after a short period of time. In
case of a sufficiently smooth solution, modes characterized by a large imagi-
nary part of the exponential have a small amplitude. Numerically these modes
are represented poorly, as follows from the figures (l1-1 - 1-3) for large
values of At. Therefore it is sometimes advantageous if these modes disappear
from the numerical solution. If a numerical method has this characteristic,
together with a stability region that contains the complete left half plane of
the tA plane, we call such a method "stiffly stable". Note that this defini-
tion of stiff stability is somewhat different from the definition given by
Lambert [15].

A linear 2-step method is "stiffly stable" in our sense if the following

relations apply:

| r, ()< 1, ReA <O (1.3-11a)
e, ()| <1, £ =2, vouy L, ReTA <O (1.3-11b)
lim r, (tA) = 0, 1 = 1,400, L, Re A < O (1.3-11c)
l‘tkl*w

where L denotes the number of roots of the resolvent equation.
As an {llustration figure (1-4) gives contour maps of a linear two step method
(i.e. the Curtiss Hirschfelder method, see e.g. Van der Houwen [9]) for which

the characteristic equation is given by:

22
—1)\31'

ul.-

® (r, At) = r2 -=r+

w|s

Depending on the application amplitude errors are sometimes minimized or phase
errors are forced to be as small as possible by special "exponential fitting"

or "frequency fitting" methods, see, e.g., Lambert (B ) [y
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b. Partial Differential Equations.

This subsection treats the propagation properties of approximate solutions of
PDEs. As in the case of ODEs we study this behaviour by means of a simple test
problem, which is a hyperbolic initial-value problem given by:

ut + ux =0, ~o<{x<®, t>0 (1.3-12a)

with initial condition:

u(x,0) = el (1.3-12b)

The exact solution of this equation is given by:

wlx, 5y = o AL (1.3-13)

For the approximation of (1.3-12) we use a semi-discrete system of ODEs given

by:

.3-14
(W) +Du =0, m=0,+1,+2 .0 (1.3-14a)

i (1.3-14b)
um(O) e omAx

where D denotes some spatial difference operator, and Ax is the constant grid

size,

On substituting:

o 1e3~15
u(t) = B(e) &' ( )

the system of ODEs is reduced to a scalar ODE given by:

o 1.3-16
U +DU =0, WO) =1 ( )

where D denotes the Fourier transform of D.

The solution of (1.3-16) is given by:



= 30 =

~

U(t) = e Ot (1.3-17)
Like Roberts and Weiss [23] we define the "relative wave speed" a by:

a = Im D/o (1.3-18)
We can define a " propagation factor" as well by:

B lop) = U Ed ¢ (1.3-19)
The phase and amplitude error are determined by this factor.

Figure (1-5) shows the amplitude factor for one wave period, i.e. to = 2n, and
relative wave speeds as function of the number of points per wavelength for
various spatial discretizations.

The number of points per wave length Mp is defined by:
Mp = 2n/0Ax (1.3-20)
The following spatial discretizations are used for figure (1-5):

th
1t (up)y + (upmu,_1)/Ax = 0, 1 order upwind differencing

nd
- 5 R (“m)t + (um+1-um_l)/2Ax = 0, 2 order central differencing

L e d (upgru))e + (o, -u )/ax =0, 2™ order box scheme

iv ¢ (u)

- + (3um -4 u

nd
el + um_z)/ZAx =0, 2 order upwind differencing
rd
v : (um)t + (um+2+ 4 um+l+ 18 Y 28 um_1+ Sum_z)/ZAAx = 0, 3 order upwind
differencing

Figure (1-5) shows that the methods 1, 2 and 5 have lagging phase errors.
Method 4 has a phase error that is partly lagging and partly leading. Method 3
has a leading phase error because of the "mass matrix", i.e. the averaging
operator for the time derivatives. By means of such a matrix one can construct

rather compact yet accurate methods, see, e.g., Stone and Brian [25].
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The methods given here are by no means the only possible spatial discretiza-
tions for the advection equation, see, e.g., Kreiss and Oliger [14] or Gary

[2].

After discretization in space the numerical scheme has to be discretized in
time as well. Instead of applying the discretization in time to (1.3-14) we
can also apply it to (1.3-16). The latter equation is an ODE because the
discretizations in time that we consider and the transformation given by (1.3-
15) are commuting operations. To study the propagation properties of the

integration methods we can apply the propagation factor as defined by (1.3-6).

On using a one-step method we obtain a numerical solution given by:

A PN ) Al (1.3-21)

From (1.3-6) it follows that the propagation factor of the integration method
is given by:

(-D' +D) t

P(D, t) = e (1.3-22)

where ¢ D' = - 1n [r,(- = D)]

The propagation factor given by (1.3-22) describes the error of numerical
integration in time compared to the '"exact solution" of the semi-discrete
equation given by (1.3-16). The phase and amplitude errors of the observed
numerical method with respect to (1.3-12) are our final goal. For this reason
we define a propagation factor given by:

(-D' + 1i0) t

P (o,t) = e (1.3-23)

This factor defines the total amplitude factor and the total phase error of

the numerical method. If we rewrite this factor as:

(-B' + D -D+1i0) t

P (o,t) = e (1.3-24)

it follows that:



Total phase error = phase error of spatial discretization + phase error of the

numerical integration in time
or:

Total relative wave speed=relative wave speed of spatial discretization X
relative wave speed of numerical integration in

time
and:

Total amplitude factor= amplitude factor of spatial discretization X ampli-

tude factor of numerical integration in time.

As examples we give relative phase speeds and amplitude  factors per wave
period in the figures (1-6 & 7) of Euler's explicit method with first order
differencing and of the trapezoidal rule combined with the spatial discretiza-
tions (i-v) as described in this section.
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The figures (1-6 & 7) represent the accuracy as function of the number of

points per wavelength, Mp, and the "Courant number" Cf. The Courant number is
defined by:

Ccf = t/Ax (1.3-25)

As is shown by figure (1-7) Euler's explicit method combined with first order
differencing and the trapezoidal rule combined with the central box spatial
discretization have amplitude factors and relative wave speeds equal to one if
Cf = 1. For this case these methods integrate exactly along the characteristic
thereby approximating our simple test problem without errors.

This property is known as "point to point transfer" cf. Roache [22]. One could
say that the phase and amplitude errors of the spatial discretization and the
integration in time cancel each other.

The combination of central differences with the trapezoidal rule has lagging
phase errors for each choice of the Courant number because both the trape-
zoidal rule and central differences are characterized by lagging phase errors
as follows from the figures (1-2) and (1-5).

If for the integration in time a linear-multistep method is applied with a
stepsize greater than one then the spurious roots influence the numerical

solution as we have described for the simple test problem for ODEs.

1.4 The influence of numerical boundary condition procedures

When dealing with finite difference approximations to mixed initial boundary
value problems, it is often troublesome to construct difference operators near
the boundary if the difference operators defined at the inner points of the
grid require function values at points outside the grid. Often this leads to
the construction of special difference operators near the boundary having
lesser orders of consistency than the operators at the inner points. Because
of this the numerical error is influenced not only by the propagation factor
or spurious roofs of the time discretization but also by numerical reflec-
tions,'which are due to spurious roots of the spatial discretizations at the
inner points combined with a different spatial discretization near the bound-
ary.

An important article on the subject of numerical boundary condition procedures
is by Gustafsson [5].



For purposes of illustration, we will consider an initial boundary value

problem given by:
U toli =g 0 xt Lt a0 (1.4-1a)
t x
u (0,8) = ™, u (x,0) = e, 0 ¢ x< 1 (1.4-1b)

The solution of this equation is given by:

u (x,¢) = ¢ 0(t%) (1.4-2)

This solution can be considered as a wave running in the increasing x direc-
tion.

An approximate solution for this problem can be obtained by semi-discretiza-
tion based upon central differences and a grid with a uniform grid size,

Ax = 1/M. This yields:

) +(um+

e —u _)/%x=0,m=1,2 ..M (1.4-3a)

1

uo(t) T emt’ um(o) - e-iwmAx: m=1, 2, coe, M (1.4-3b)

The value of U4 1(t) is obtained by second order extrapolation:

Uy (8) = 2w (8) = u  (2) (1.4-3¢)

Substitution of (1l.4-3c) into (l.4-3a) yields:

(uM)t + (u, - uM_l)/Ax =0 (1.4-4)
This equation is a first order consistent approximation of (l.4-la).

According to Gustafsson [5], for finite difference schemes with sufficiently
smooth solutions, the order of convergence is at least of order m if the ap-
proximations at the inner points are at least of order m while the approxima-
tions near the boundary are at least of order m-1. We will illustrate this
important observation and the existence of numerical reflection by comparison

of (1.4=2) with the "exact solution" of (1.4-3).



For the construction of the solution of (1.4-3) we rewrite this equation as:

u =Au+3B (l.4-5a)
e u

wifh initial conditions

u(0) = u° (1.4-5b)
where:
0 -1/ 2Ax
. -1/ 2Ax 0 =1/ 2Ax

A= \\ \ s

-1/ 2Ax 0 -1/ 2Ax

1/Ax% -1/Ax%

B - [eimt/ZAx, Oy csins 0]T,

T
n(t) = [ul(t). cees uM(t)] >
o e—iwa -1wmAx -iwMAX, T

u = [ T ) by B |

The solution of (1.4-5) can be considered as composed of two parts, denoted

as:
w(e) =u(e) +u(e) , (1.4-6)
where 3?(:) = [ulp(c), vy u: ey, ooty u; (t)]T
and w'(6) = [0)"(0), wery 0y (8D, weny wy ()T

E?(t) denotes a particular solution of (1.4-5) and Eﬁ(t) denotes the homogene-
ous solution of (1.4-5).

For the construction of uP(:) we substitute a normal mode given by:



~ P st m
u (t) = e e

(1.4-7)

According to Strikwerda [24] this yields the following characteristic equa-

tion:
2 Sr + rz- 1=0

where S = gAx

To fulfil the boundary conditions we pose:
s = iy

This yields:
Ty g = -tux + (=@ + 17}

The particular solution umP(t) is given by:

P iwt iwt 1 2
u- (E) =tate ¥ rlm +b eIWtrzm -e? (au,~ + bu "),

where y**° = [u1 S ses u;’z, ceey U;’ ]

The constants a and b are given by the boundary conditions:

a+b=1

M M =
ar (rl-z + 1/r) + br, (ry=2 + 1/r,) = 0

1

The homogeneous solution ufl(t) is given by:

gH(t) = [Eo = 2P(O)] eAt _23 eAt

where 23 = [uf, ceey U;]T or “z = “; % u;(o)

For the eigenvalues xA of A the following relation holds:

(1.4-8)

(1.4-9)

(1.4-10)

(1.4-11)

(1.4-12a)

(1.4-12b)

(1.4-13)



RN, €0, ¥, (1.4-14)

Proof: define A* by A* = ¢~1AG where G denotes a similarity transformation
given by:

For A* the following relation holds: R (A u,u) = - uy /Ax <0
V¥ u denoted as [“l’ vy uM] > R, AA* < 0> R, Ay € 0oV Ao
(end of proof)

From (1.4-14) it follows that the solution u(t) remains bounded if t + =.

If |wAx | < 1 then rj 5 can be denoted as

- ' L
LR Sy T b (1.4-15)

where w'Ax = arcsinwAx .

At this point we define a spatial propagation factor given by:

Polo,xl = e°1(w'-w)x

From this, it follows that:

u; = Plis san)e N (1.4-16a)
ui g e (1.4-16b)
u: = [1 - P(w,mAX)] o LmAX . o b cos w'mAx (l.4-16c)
a=1/1+u (1.4-16d)

b = a/l+ (1.4-16e)



where ul,uz,u3, a and b have been defined in (l.4-11), (1.4-12) and (1l.4-13)
and

-2iMw'Ax

a = (-l)M e (cos w'Ax-1)/(cos w'Ax+1).

Since it is easy to verify that (1)au1m =[1+0 (sz)]e_immAx

95 “; eﬂnt = (1.4+0 (sz)) u(mAx, t) ,(ii) buzm =0 (Ax2) and (iii)ui =0 (sz)

it follows from the comparison of the numerical solution given by (1.4-6) with

2
the exact solution (1.4-2) of (l.4-1) that the convergence is of order Ax .

Because 21 and 2? can be considered as waves propagating in opposite direc-
tions and the latter is a spurious numerical wave, it follows that a can be

considered as a "numerical reflection coefficient".

Note that for |wAx|> 1 the numerical solution becomes totally erroneous

while the modulus of the spatial propagation factor is no longer equal to one.

A possible first order extrapolation formula at the outflow boundary is given

by:

(1.4-17)

Substitution into (1.4-3a) yields:

- = 1.4-18
(uM)t + (uM uM_l)/ZAx 0 ( )

This approximation is not consistent with (l.4-la).
According to Gustafsson [5], however, this boundary procedure does not destroy
convergence as can be checked easily in the case of our example. The order of

convergence is reduced to first order, because the numerical reflection fac-

tor @ is for that case of order Ax and is given by:

a = (-1)M e-21 Mo Ax (cos 2w'Ax-1-isin 2w'Ax)/(l+cosw'Ax) (1.4-19)



The propagation factor is unaltered. The matrix A is changed but the eigen-
values still do not have a positive real part.

The results of Gustafsson [5] allow several possible boundary procedures such
that convergence is not destroyed. Even inconsistent, or zero order consis-

tent, procedures are possible, as this example illustrates.
Yet there are limitations. Zero order extrapolation or overspecification of
boundary conditions can destroy convergence and cause unbounded numerical
solutions if t » =,
To illustrate this we consider an initial boundary value problem given by:

ut + o 0; ¢ 2ty a0 (1.4-20a)

u (0,t) = 1, u (x,0) s Qe il) st Gieldl (1.4-20b)
The solution of this equation is given by:

u fx,t) .l + t =% it'=ix <0

(1.4-21)

u (x;8) = 1, t=x>0

A semi-discrete numerical approximation based upon 2nd order central differ-

ences is given by:
(Um)t + (um+1 - um_l)/ZAx =0 (l.4-22a)
u(t) =1, u(0) =1-mx, m=1, 2 ..., M (1.4-22b)

Again this equation is not complete, and we impose an extra boundary condition

given by:
u“+l(t) =0 (1.4-22¢)

Substitution of this "zero order'" extrapolation formula into (1.4-22a) shows

inconsistency.



For the construction of the solution of (1.4-22) we rewrite this equation as:

u =Au+B, u0) =y’ (1.4-23)
where:
0 -1/ 2Ax
=1/ 2Ax 0 -1/ 2Ax
A= \\\\\\\\ ‘\\\\\\\\\ \\\\\\\\\ 3
-1/ 2ax 0 -1/ 2Ax
-1/ 2Ax 0

B = [1/2%, 0, ..., 0]T,
)
u(t) = [ul(t), P uM(t)] and
o T
ARt ] sifx, i ioons) ImMAXG 5% e op. 045
If we write u(t) as:
(1.4-24)

u(t) = gp(:) +3H(t)

H
then gp(t:), the particular solution, and u (t) » the homogeneous solution are

given by:
M
W) = 50 (m) + QE1D[6(m) (1= Fpp) + 8(mtD) g €] (1.4-25)
EH(C) = [2(0) —E_P(O)] eAt (1.4-26)

where:

8§61 « } [+ (=171

It follows from this solution that convergence is impossible because u:l(c)
will always oscillate despite the values of M, and independently of
Ax (Ax = 1/M); for odd values of M the solution will grow unboundedly if



t » », and the exact solution on the interval 0 < x < 1 will be equal to one

in this case.

For boundary procedures as given by (l.4-3c) or (1.4-17), convergence is en-

sured.

1.5 Concluding remarks

When dealing with stability problems of finite difference methods one must
realize in which way stability has been defined.

For PDEs necessary conditions for G-R stability are usually not too difficult
to derive by verification of the G-R condition, although for some problems
this could lead to complicated analytical problems.

The Von Neumann condition is a necessary condition to fulfil the G-R condi-
tion.

Application of the matrix method means verification of B-H-K stability. In the
case of implicit methods for PDEs this could be very difficult due to the
inversion of large matrices. Moreover if B-H-K stability 1is established,
convergence is not a necessary consequence.

Because stability is almost always established for simplified problems, addi-
tional practical experience with the contemplated numerical model remains a
necessity.

The tools for the verification of the G-R condition can also be used to esti-
mate the propagation properties of a numerical model.

The fact that first order extrapolation methods near boundaries are sufficient
to maintain convergence permits several possible numerical boundary condition
procedures. However, overspecification could well lead to instability or

completely erroneous results. LS

-
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2 Efficient Integration Methods for the Advection Equation

2.0 Introduction

This chapter will describe some efficient and unconditionally stable methods
for the integration of a simple hyperbolic equation. This equation is given
by:

u +vix) u =f (x,t) (2.0-1)
t x

This equation will be referred to as the nonhomogeneous advection equation.
The main motivation for our interest in approximation methods for advection
equations 1is the possible application of these methods for the advection
operator of the SWE, which should be chosen carefully; otherwise instabilities
are likely to be induced, see e.g. Weare [22]. This integration method, how-
ever, should be efficient from a computational point of view. It should be
possible to solve not only time-dependent problems but also steady state
problems, see, e.g., Vreugdenhil and Wi jbenga [21].

Since many integration methods for SWE are defined on a fixed grid with an
equidistant grid size the method that we are looking for should be defined on

such a grid as well. The following demands are to be satisfied:

(a) Second order consistency at least.

(b) Computational efficiency.

(c) Suitability not only for time-dependent problems but also for steady state
problems.

(d) Unconditional stability.

(e) Easy to implement for the approximation of the advection operator of SWE
without a significant reduction of the overall efficiency.

Many methods for the integration of advection equations are mentioned in the
literature. These can be divided into classes according to the way in which

they are constructed:

£1) methods based upon separate approximation of each derivative by finite
differences

(ii) characteristic interpolation methods



(111) characteristic methods
(iv) finite element methods
(v) spectral methods

This chapter deals primarily with methods of class (i). Some authors, e.g.
Benqué et al [2], claim that methods of class (ii) are very efficient for the
approximation of the advective part of SWE. Therefore we will treat this class
as well. The other three classes are not treated here because they are based
upon a grid structure different from the one we use for the SWE. For a trea-
tise on characteristic methods see Abbott [1]. Finite element methods for the
advection equation are treated by Morton [15]. A monograph on spectral methods
has been written by Gottlieb and Orszag [8]. This method is not widely used
for the approximation of SWE.

Section 1 will deal with efficient time-spitting methods for the integration
of a homogeneous advection equation with a frozen coefficient. Section 2 deals
with the stability analysis of these methods. Section 3 shows how the methods
of section 1 can be extended to an advection equation with variable coeffi-
cients. Section 4 deals with characteristic interpolation methods that are
unconditionally stable. Section 5 describes a few simple test problems to

compare the methods treated.

2.1 Efficient time splitting methods for the frozen coefficient equation

Consider the following advection equation:

u +Vu =0, 0<x<1, V>0, V= constant ("Frozen") (2.1-1a)
t X

The initial and boundary conditions are given by:

u(x,0) = 0, u(0,t) = g(t) (2.1-1b)
Let (2.1-1) be approximated by a consistent system of ODEs denoted as:

(2.1-2)



v
where u(t) = [ug, eeey uyl', the element u, are grid functions defined on an
equidistant grid with grid size Ax, Ax = 1/M. A denotes a MxM matrix and B a

vector with M elements.

After discretization in space (2.1-2) has to be integrated in time. Each of

the integration methods that we consider can be written in the form:

Stage 1:

(gf 2 EF)/Q T = A EF + B¢ (2.1-3a)
Stage 2:

W - uh v Ay OB (2.1-3b)

where } (A; + Ap) = A.

If an integration method can be denoted in the form (2.1-3), which we will
call a "two stage split method", and if both (2.1-3a) and (2.1-3b) are consis-
tent approximations of (2.1-1) then it is well structured to be implemented as
the advective part of an ADI type of numerical scheme for the SWE. In chapter
3 this will beécome apparent. It 1is the reason why in this section we only
consider methods of type (2.1-3). Three examples of this type will be des-
cribed. The first two are well-known: the Crank-Nicolson method and the
Angled-Derivative method as proposed by Roberts and Weiss [19]. We will show
that these methods are of type (2.1-3). The third method, that we propose has

a reduced phase error compared with the other two methods.
a. Crank-Nicolson scheme
This scheme 1s based upon a spatial discretization given by:

(um)t +V (um+1 - um_l)/ZAx =0, m=1, 0o, M
(2.1-4a)
Uiy * 2 By = Uy

uo(t) = g(t) (2.1-4b)



The integration in time is written in form (2.1-3) as follows:

Stage 1:
gt K o oF - i (2.1-5a)
(um - um)/} T +V (um+1 um_l)/ZAx 0, m g aiate st
Stage 2:
k+ * k+1 k+1
(um e um)/§ T+ V (um+1— um_l)/Zcx =0, m=1l, ...,M
(2.1-5b)
k+1 k+1 k+1
Upl T 2 Uy - uyy
k+1 k+1 (2.1-5¢)
Uy

The relative wave speed of this method and the amplitude factor per wave

period are given by figure (2-1), for various Courant numbers, Cf, where:
Cf = V 1/AX (2.1-6)

The unconditional stability of this method, including the boundary procedure,
has been proven by Kreiss et al. [11]; see also Wirz et al.[24].

The second stage of this method implies the solution of a tri-diagonal equa-
tion. Although the "double sweep method",‘see e.g. Godunov and Ryabenki [7] is
an efficient method for solving tri-diagonal equations, when it is implemented
as part of a numerical SWE procedure, with derivatives in more than one spa-

tial dimension, it could decrease overall efficiency. Therefore we consider

another two-stage split method based upon (2.1-4):
b. The Angled Derivative method

This method was proposed by Roberts and Weiss [19]. For its application to the
advective part of SWE,see Stelling [20]. This method, which is also based upon
the spatial discretization given by (2.1-4), is denoted in the form (2.1-3) as

follows:



Stage 1:

2 el T, ~ a)Awt w.) M
(um um) T (um+1 u AX , m s wnhy

(2.1-7a)
k k k
Upgp] = 2 Uy T Uy
Stage 2:
k+1 * k+1 k+1
(u,  =udtcs+V(a =~-u_, )ax=0,ma=1l, ..o, M (2.1-7b)
+ +
uz 1 = Sk 1 (2.1-7¢)

Each of the equations (2.1-7a) or (2.1-7b) are consistent with (2.1-1). If we

eliminate u* then we obtain:

k+1

k+1
(u, uy

k+
. - st ) /28% = 0 (2.1-8)

- u:)/T +V (u;+1 - uﬁ +
This equation is a second order (o(sz, 12)) consistent approximation of (2.1-
1). The relative wave speed and amplitude factor per wave period are given by
figure (2-2). The phase errors of this method are larger than the phase errors
of the C-N schem;. In section 2.2 unconditional stability is proved.

Equation (2.1-7b) is implicit. If the calculation of u, starts at m=0 and
proceeds in the increasing m direction then the bi-diagonal equations are
solved in one sweep. This makes this method just as efficient as an explicit
method and more efficient than the Crank-Nicolson method, especially for
equations with derivatives in more than one spatial dimension.

It is also possible to construct an Angled-Derivative method that sweeps in
the decreasing m direction. If we write this method as a two stage scheme then

we obtain:
Stage 1:
* k ) i
(up-u)ts+V(u-u )/Ax=0,m=1, ..., M (2.1-9a)

Stage 2:



k+1 * k+1 k+1
(um - um)/} T+ V (um+1 e Y/Ax = 0, m = 1, eeey M
(2.1-9b)
k+1 * k
Unpp = 2 oy - ouy
k+1 k+1
u, =g (2.1-9c)

The relative wave speed is given by figure (2-3). From this figure it follows
that for this sweep direction the phase error is much smaller than for the
sweep in the increasing m direction. For Cf = 1 the method has zero phase
error. The method given by (2.1-7) however is unconditionally stable whereas
(2.1-9) 1is stable only if Cf < 1, see section 2.2. Now we will try to con-
Struct a method that (i) is unconditionally stable, (ii) has small phase
errors and (iii) is as efficient as the Angled-Derivative method.

€. Reduced phase error, two stage split scheme
This scheme is based upon the following spatial discretization:
+ - =
(ul)t V(u2 uo)/2Ax 0

- = = 2, eeey M=2
(um)t+V(um+2+4um+1+18um 28um_1+5um_2)/24Ax 0, m s . e
.1-10a

(uy ) + VQut 3uy = Suy o+ uy 5)/4Ax = 0

(uM)t+ V(3uM- éuM_1+ uM_z)/zAx =0

uo(t) = g(t) (2.1-10b)
At m=2, «sey M=2, the order of consistency is three, at m=1, M-1, M the order
of consistency is two. According to Gustafsson [9] this means that the conver-
gence rate is of order three. The reduced phase error of this spatial discre-
tization of the inner points when compared with central differences is repre-

sented in figure (1-5).
For the integration in time we propose the following split scheme:



Stage 1:

(u] - u';m T+ V(s - u‘;)/Ax .

* k k k k k
(um - um)/§ T+ V (um+2 + 4“m+1 - Aum_l— um_z)/12Ax =0, m™2, .o, M-2
(2.1-11a)
% k k k
(uM-l 18 uM—l)/* e | (uM 5 UM_z)/zAx = (0
* k k k k
(uy = up) /¥ T+ V (Buy = buy_ | + uy »)/2x = 0
Stage 2:
*
ARV S A oAl V7S
(2.1-11b)
k+1 * k+1 k+1 k+1
(um - um)/f T+ V (3um - kum_l + um_z)/zAx =0, m2, «ee, M
“k+l = 8k+l (2.1-11c)

Each of the equations (2.1-1la) and (2.1-11b) is consistent with (2.1-1). If
*

we eliminate u, then the resulting equation is an 0 (12, Axa) consistent

approximation of (2.1-1) at the inner points and an 0(12, sz) consistent

approximation of (2.1-1) near the boundary.
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As follows from the figures (2-1), (2-2), (2-4), (2-10), and (2-11), the phase
errors of this method are reduced considerably compared with the Crank-Nicol-
son scheme or the unconditionally stable Angled-Derivative method. However
this method is dissipative, and the other methods are non-dissipative. The
dissipation is small compared with the dissipation of the first order upwind

scheme, see figure (1-5).

If the calculation starts at m=1 and proceeds in the increasing m direction
then the implicit equations of this method, which are lower diagonal, are
solved in one sweep, i.e., this method is as efficient as an explicit method,
and it is also, as we will show in section 2.2, unconditionally stable.

For large Courant numbers each method has approximately the same phase error.

2.2 Stability Analysis

In this section we will examine the stability of (2.1-7, 9 and 11). To study
G-R stability of (2.1-7) we divide this equation into two subproblems:
The first, the Cauchy problem, is given by:

k+l_ k kbl kel *
(= )/ 5+ V (“;1‘ u:+ Uy = Uy W 2ERSRTO5 0V L, Tt (2.2-1)

The second subproblem, the right half plane problem, is given by:

k+ k.. okl kEl 2=
(upy l—uﬁ)/T % V(“2+1‘ ut up - up-1)/28% = 0, m=l, 2, «co (2.2-2a)
k (2.2-2b)
W, - 0

Formally we have to consider a left half plame problem too, but we use second

order extrapolation at the outflow boundary from which the stability has been
proven in general, see Goldberg and Tadmor [5,6]. Therefore we refer for the
left half plane problem to these authors.

To verify the Godunov-Ryabenki condition we substitute into (2.2-1) an eigen-

solution given by:

~k o k2 (2.2-3)
um A um

This yields the resolvent equation given by:



A [um > %‘(um G um-l)] i [um 3} %I(“m+1 2 um)] =0 e

where r = Cf = Vg/Ax

For the Cauchy problem we pose ﬁm = eiman

. This yields | A |= 1V r, i.e.,

the Cauchy problem is unconditionally stable. The G-R condition is satisfied

for (2.2-2) if (2.2-4) combined with:

u, =0, limu < C (2.2-5)
mreo

where C denotes an arbitrary constant, for Ihl > 1, has only the trivial

solution Oy = 0, see Kreiss et al [11].

The general solution of (2.2-4) is given by:

~

m m
uy=az +bz (2.2-6)

where Z) and z) are the roots of a characteristic equation given by:
v i o
z + 2z (\-1) (l+§)/r -A=0 (2.2-7)

From this equation it follows that lzll.lzzl = |x|] or if |A| > 1 then at
least one root of (2.2-7) has a root with a modulus larger then one, i.e.
either a=0 or b=0. From Q5 = 0 it follows that a = b = 0 or the G-R condition

is always satisfied.

If we apply the same procedure for (2.1-9) then we find an unconditionally
stable Cauchy problem. To verify the G-R condition for the right half plane
problem, we follow the same procedure as described above, again we check if Q
= 0, This solution is also given by (2.2-6) but here z), 9 are roots of the
following characteristic equation:

22422 00-1) A -5/R) -1 =0 (2.2-8)

Following Miller [14] the roots of (2.2-8) Z, ., have the property |zl 2|< L REE:
’
and only if (1) |A|> 1 and (ii) if the roots of the "reduced pol§nom1a1",

see Miller [14], given by:



z + (1-r/2)/(x/2) = 0 (2.2-9)

have a modulus less than one. From this it follows that if:

=il (2.2-10)

then ,zl,zl < 1 with lh l) l. In that case for a = =b there is a non-trivial
solution that fulfils (2.2-5), i.e., in that case the G-R condition is not
fulfilled which means instability. The following condition is therefore neces-
sary for stability:

CEa<:1-0(CE w. 1) (2+2=11)

This is the well-known C-F-L condition, see Courant, Friedrichs and Lewy [3].
Robert and Weiss [19] have derived this condition by means of the so-called
"spatial amplification" factor, which in this case yields (2.2-11) as well.

For the calculation of the "spatial amplification factor", Sp» We first elimi-
*
nate u from (2.1-7) to obtain the following form:

k+1 ;
= u; -Vt (u; - u:_l)/Ax (2.2-12a)
k+1 k k k+1 =
Uy = S, upy Fup - Sy oupy s mo= Mol M2, e, ] (2.2-12b)
¥ it 2.2-12
uo =g ( c)
vhere S, = (r/2)/(1-r/2)
Equation (2.2-12b) can be written in the form:
M~-2-m =
k+l_o Kk a?vadraiy ek sgilegMelk oM MK o o g
u Spu'“'1+j§o(l sp)sp( 1) uoritSp ( 5 M ( )
A necessary condition for uk+1 to be bounded as M » o is:
m
(2.2-14)

Sp <1

This condition is fulfilled for condition (2.2-11).



Finally we will show that application of the C-F-L condition, as introduced by
the famous article of Courant, Friedrichs, and Lewy [3], also yields this
condition as a necessary condition for convergence. According to this article
the numerical domain of influence must contain the characteristic of the
approximated PDE. For the sweep in increasing m direction, the domain of influ-
ence is the shaded area of figure (2-5); this area will always contain the
characteristic if it has a positive angle with the X-axis. For the sweep in
the decreasing m direction, however, the characteristic will belong to the

numerical domain of dependence only if (2.2-11) is satisfied.

timelevel timelevel
sweepd1rectiE£) // { sweepdirection
4 R

K+l % character1stﬁfs_ _ :

k+1 T* \\
k ¥  \

m m+l  grid- K = omey
numbers m-1 m m+1 grid-
i numbers
unstable =
Sstable

Figure 2-5 Numerical domains of dependence for Angled-Derivative method

Next we study the stability of (2.1-11). If u* is eliminated from (2.1-11) for

the inner points we then obtain:

1 ktl ktl

k+1
m-l+“m—2

k k+
u -um+r[(3um =4u

¥ Koo Mo
n Wht(ug o+ o =buy y-up_5)/24] = 0

im¢

If we substitute u; = xke , ¢=oAx, then we obtain the propagation factor:

1 - r/6 i sinp (2 + cosp)
1 +1¢/2 [(1 - cos@)2 + ising (2-cos¢)]

P(o,t) = (2:2~15)

Because [P (o,t) [< 1 ¥V r, 0 < ¢ < n, the stability of the Cauchy problem is
established.

The stability of the boundary schemes is difficult to study due to the degree
of the complex resolvent equation. If we apply the heuristic theory of Trapp



and Ramshaw [16], then (2.1-11) is stable. (They assume that an approximation
is stable if the boundary schemes when applied to all grid points, == < m < =,
are stable, combined of course with stability of the scheme at the inner
points.)

If at m = M-1 we apply the same scheme as at m=M then, following Goldberg and
Tadmor [5,6], the outflow part is stable. Finally, practical experience did not

show instabilities.

2.3 Time splitting methods for the advection equation with variable

coefficients

In this section we will construct methods for the advection equation with a

variable velocity given by:

u, + v(x) od % 0 (2.3-1)
The methods that we will describe are based only upon (2.1-8), (2.1-9), and
(2.1-11), because .the extension of these methods to the variable coefficient
case involves an aspect which does not exist for the constant coefficient
case,

The straightforward application of the Crank-Nicolson scheme will not be
described because there are no principal differences from the constant coeffi-
cient case.

Application of (2.1-8) for this equation gives:

+
(uk 1

s ktl u::})/ux =0 (2.3-2)

k k k
-um)/r i (um+1— u+ uy
where iy (mAx) .

If we regard v as constant ("freeze the coefficient") the stability analysis

of the preceding section is applicable, yielding as local stability condition:

vmtle > -1 (2.3-3)

Application of (2.1-9) gives:



k+l_ k k+l  k+l, k_ Kk =
(um - um)/t i (um+1- un Ll um_l)/ZAx = 0 (2.3-4)

For this scheme the local stability condition is given by:

vmt/Ax £l (2.3-5)
Obviously if the sign of v, varies, then neither (2.3-2) nor (2.3-4) repre-
sents an unconditionally stable scheme. However by using (2.3-2) if v, < 0 and
(2.3-4) if s > 0 an unconditionally stable scheme is obtained. If we intro-

*

duce the intermediate value u”™ this scheme is given by:

Stage 1:
* k k
(um- um)/} T + S_x (vm, um) =0 (2.3-6a)
Stage 2:
k+1 * k+1
(um - um)/i T + S+x(vm, u )=0 (2.3-6b)
where:
0 (um+l-um)/Ax for v >0

S vy uz)
m’ m

v (u-=-u )Y/Ax for v < 0O
m m m-1 m

2 (um— um_l)/Ax for e >0

S (v 0}

+x m m
v. (u _=~u )/Ax for v < 0
m m m

m+1
The second stage is the implicit part of the method. The matrix structure of
the system of equations for u:+l depends on the behaviour of the sign of vp.
If the sign is constant then the structure is bi-diagonal and the equations
can be solved in one sweep. If the sign is changing then the structure is tri-
diagonal and a doutle sweep method is one of the possihilities for solving the
equations. Instead of a double sweep method we propose an iterative solution
method. For that purpose we write (2.3-6b) in the form of a predictor-corrcc-

tor method given by:



Cap = "7k w4 s vy, oY, apap) - 0 S
uk+l o uk[P] (2.3-7b)

where p = 1, ,.., P and

k[pl_ k[p] 0
L) vm(um uwl )/Ax, for o >
S [V u', 0] =
k[p-1]_  kl[p-ij S
vm(u 1 up Wb <o v 0

k[p-1]  k[p-1]
v_(u -

i 20 )/Ax, for ve b 0

k[p] 5
Sx [vmn um ’ 1]

v (uzigl— uslp])/Ax, for % <0

& (ptp') = % [1 + (—1)p+"'],

0, -4f Tl N0
m=1

p' =
M

I Sy €0
m=1 ™

Note that 1f §(p+p') = O then (2.3-7a) proceeds in the increasing m direction,
for §(p+p') = 1 (2.3-7a) proceeds in the decreasing m direction.

In general the predictor-corrector method as described above converges very
fast as was found by practical experience. Usually two steps are enough. This
Means that the cost of this method is approximately the same as when the
implicit set of equations is solved by a double sweep method. The principle of

the method described here can be extended more easily to multi-dimensional

Problems.

To illustrate the fast convergence rate of (2.3-7) we give four examples of

Possible matrix structures depending on the signs of wvp?



Example I:

sign of v : + + + + T D0 Vi

main diagonal

/

Matrix structure: * *
* *

etc.

For this case the exact solution of (2.3-6) is reached by (2.3-7) in one step

and needs no iterations.
Example II:

sign of Von? - - g - cos L <0Vm

main diagonal

Matrix structure * *

etc.

For this case the exact solution of (2.3-6) is reached by (2.3-7) in one step

and needs no iterations.
Example III:

sign of wp: + + Hp Vp = 0 - o ey
main diagonal

Matrix structure: * *

etc.



For this example the exact solution of (2.3-6) is reached by (2.3-7) in two

steps.
Example IV:

sign of Vi - - Vm =0 + + etc

main diagonal

Matrix structure: * *
* %
]
* *
* *
etc.

For this example the exact solution of (2.3-6) is reached by (2.3-7) in two

Steps.,

The method given by (2.1-11) can be treated in the same way, in the case where

Vv is variable and changes sign. We obtain:

m " i T + v u + 4u - 4u - = 2.3-8
( m)/ m( m+2 mt1 m-1 u 2)/12Ax 0, ( - 8)
: T v 2.3-8b
m m /} SH( m? um ) =0 ( )

where:

- for v. > 0
v, (3um aum—l + um_z)/ZAx. 5

S (Vi) =
i =0 2Ax, for v. < 0
vm = m 4um+l um+2)/ ¢ m

Again the second equation is solved iteratively by a predictor-corrector

method:

(ui[p]— u;)/} T + S+x[vm’ uﬁlp]. s(p+p')] =0 (2.3-9a)



u:+1- u;[P] (2.3-9b)

where: p=1, ..., P and

= ko= ko=
v (3u§[lJ 61 4um£€ 6]+ umEg 6])/ZAx, for . >0
s, [v, ulPl 4] =
+x"'m’ m y

_a k[p-1+5] k[p-1+5]_ k[p-1+5]
144 ( 3um + 4um+l u o )/2Ax%, for Yo <0

8 (pp") = N+ (=0T}

Oy rkE 1 eResw a0
m=1 ™

M
Ve dF 0T v 540
m=1 ™
If 6 (p+p') = O then (2.3-9a) proceeds in the increasing m direction; for
8 (p+p') = 1 (2.3-9a) proceeds in the decreasing m direction.

Each stage of (2.3-6) is an O(t, Ax), consistent approximation of (2.3-1), the
overall order of consistency is 0 (12, sz).

The order of consistency of (2.3-8) is 0 («, sz), and the overall consistency
is 0 (12, Ax3).

2.4 Characteristic interpolation methods

Some authors, e.g., Benqué et al. [2], claim that very efficient approximation
methods for SWE can be constructed by using "operator splitting". This means
that the differential operator 1is split into several parts. Each part is
approximated by a special method. For the advection operator Benqué et al
apply an unconditionally stable characteristic interpolation method. In this
section we describe the principle of this method for the following simple

advection equation:

u +Vu =90 (2.4-1)
t x



The general solution is given by u(x,t) = f(x-Vt). This means that the solu-
tion of (2.4-1) is constant along the line x = Vt which is called a character=
istic. For characteristic interpolation methods this characteristic is used
for the construction of approximate solutions. For the exact solution, the

following relation holds:
ul (k+1)t, mAx] = u(kt, mAx-Vt) (2.4-2)

The point [(k+1)t, mAx] is a grid point but in general the point (kr, mAx-V7)
does not coincide with a grid point, see also figure (2-6).

?t /‘r_:l/v x
(k+1)T ¢ * *
kT - * ’
(kt,mAx-VT)
-+ 5
(m-1)Ax  mAx x

Figure (2-6) x,t space of (2.4-1)
* grid points

An approximation for u(kt,mAx-VT) can be obtained by Lagrangian interpolation.

This gives the following numerical scheme:
= 2.4=3)
Uk 'xs (mAx -Vt, uk 1), =Y, soey M (
m P -
wherecfi (x, u) denotes a Lagrangian interpolation polynomial of order p
p o

T
which is based upon lugs +ees uyl.

This well-known principle forms the basis of many numerical methods for the

advection equation, see e.g. Fromm [4], Roache [18], and Wesseling [23].

Both Lagrangian polynomials and Hermitian polynomials are used, see, e.g.,

Holly and Preissmann [10].



In general, characteristic interpolation methods are explicit and not uncondi-
tionally stable, although there are exceptions, for example, '"Carlson's
scheme'", see Richtmyer and Morton [17]. This scheme tries to follow the

characteristic as close as possible while keeping unconditional stability.

A similar principle is treated by Holly and Preissmann [10]. We treat this
principle by means of a second order Leith scheme, which is equivalent tn the

second order Lax-Wendroff scheme. It is given by:

k
m+

k+1 k

k k k 2 k !
- e - - (2,4=4
u u +r (u 1 u _1) + 3 r° (u -1 2u 4+ u 1) (2 )

where r = Vt/Ax (r = Cf, the "Courant number")

This scheme, which is well known, has the following necessary stability condi-

tion:
[rl<1 (2.4-5)

This means that as soon as (2.4-4) represents extrapolation instead of inter-
polation, the numerical scheme becomes unstable, because in that case the
numerical domain of dependence does not contain the characteristic of (2.4-1),

see figure (2-7).

characteristic (unstable, i.e. extrapolation)

characteristicb(stable, i.e. interpolation)
Figure (2-7) Numerical domain of dependence of 2nd order Leith method.

By choosing the basis points of the interpolation polynomial such that it

always represents an interpolation formula, an explicit unconditionally stable



method can be constructed.

Based upon second order Lagrangian interpolation such a scheme becomes:

k k
N I L I I ¢ B S E TS DR

k k
= [+ A23=1) “:;-1-1‘ 2j uy g+ 4 254D) umH_j]

e (uﬁ_l_j- 2uf_ o+ u:+l_j) (2.4-6)

where j is an integer number for which the following relation holds:

3=1 < r ¢ §+1 (2.4-7)

The scheme (2.4-6) is unconditionally stable for the Cauchy problem. Phase and

amplitude errors for various Courant numbers are given by figure (2-8).

If we choose r = j*+1, (2.4-6) becomes:

ktl _ k (2.4-8)
un um—l-j'
In that case, the method yields the exact solution, and the scheme is said to

have the "point to point transfer property". This is common to all charac-

teristic interpolation methods.

If a method constructed by the method of lines has this property then it can

be written in the form of a characteristic interpolation method. As an example

we treat the "box scheme", see Lam and Simpson (12). For (2.4-1) this scheme

is given by:

k
+ + k k k+l k+#l, k =0 (2.4-9)
R i e R RS R A HEE N R ST

which is a combination of the trapezoidal rule, see Lambert [13], for the

integration in time, and the box spatial discretization treated in chapter 1.

By rewriting (2.4-9) we obtain:



k+1 1-r k+l1 k ) 5o 4
Ul * " T %m T Ut THr Ynhl (2.4-10

This formulation can be considered as Lagrangian interpolation based upon

k+l k d k
u o, u oand uo,,

see figure (2-10).
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k+1 k+1
um +
Bk bty

Sat “‘um/ U1

0 basis points for Lagrangian interpolation.

Figure (2-10) Lagrangian interpolation of box scheme.
If r= = k+1 k " fer". S 1so
r=1 then (2.4-10) gives U™ U i.e., "point to point transfer . See a
the relative phase speed of the box scheme given by figure (2-9) for various

Courant numbers. The relative amplitude of this scheme is always l.

Some authors, such as Roache [18] and Morton [15], claim that "point to point
transfer" is a necessity for advective methods. We believe it is an advantage
but not a necessity, moreover characteristic interpolation methods are often
only first order accurate when applied to steady-state or non-homogeneous
Problems, see Roache [18] p. 78 or p. 351.

If the equation that is to be approximated is not purely advective, then the
concept of "fractional steps", is introduced to implement the charscteristic
interpolation approach, see Holly and Preissmann [16]. This approach is s
quite often for advection-diffusion problems and is applied by Benqué et al.
[2] for suE.

Here we will demonstrate this principle for the approximation ¢f = sinple non-

homogeneous problem given by:

@ (2.4-11)
ut + Vux fix,t)

This equation is "split" according to:
(2.4-12a)

*
u + Vu_ =0
t x

and:



u, = £(x,t) (2.4-12b)

Equation (2.4-~12a) is approximated by some characteristic interpolation method
and (2.4-12b) by an arbitrary method.
For example, if (2.4-12a) is approximated by (2.4-6) for r < 1 and (2.4-12b)

by the trapezoidal rule then we have the following scheme:

Stage 1:
* k k k 2 .k k k
Y- YT ir (um+l- um—l) o (um—l- 2um * um+1) (2.4-13a)
Stage 2:
k+1 * k+1 k
(um - um)/1 =} fm + 4 fm (2.4-13b)

where fx = f (mAx, kt).
Neither (2.4-13a) nor (2.4-13b) is consistent with (2.4-11) but by elimina-

*
ting u, we obtain:

k+1
m

k k k 2.k k k 2 k+1 k
=up )/ eV Cup a1 )/28% = deVTCup_=2u du )/AxT=E (F ) (2.4-14)

(u
This equation is only first order consistent with (2.4-11). Let us assume that
(2.4-14) 1is applied as an iterative method for the approximation of a steady-

state equation given by:
Vux = f(x) (2.4-15)
then for r=1 (2.4-14) gives an approximation given by:

) = f (2.4-16)

x (um-“m-l m

This is only a first order accurate approximation of (2.4-15). By increasing
the Courant number the approximation becomes less accurate. For example, r=4

glves:



= f (2.4-17)

- (um A um—é) m

Increasing the order of the interpolation polynomial will not change (2.4-17)
as can easily be verified. This means that the accuracy of the approximation

of a steady-state problem will not be increased.

Note that for large Courant numbers (2.4-6) contains a large number of spuri-

ous roots.

The aspects as described above are a major drawback of the characteristic
interpolation method when applied to SWE because steady state problems are
often encountered in practical applications, see e.g. Vreugdenhil and Wijbenga
[21]. Also the implementation of boundary conditions generally reduces the

order of accuracy, see Roache [18] when operator splitting is applied.

Methods of class 1, as defined in the introduction, of which the box scheme
(2.4-9) is an example too, give no problems when non-homogeneous terms are to
be implemented. For these methods the ultimate result, when steady-state
Problems are approximated, does not depend on t. Only the convergence rate

depends on the timesteps.

Finally we compare the propagation properties of the unconditional stable
methods mentioned in this chapter:

(1) Crank Nicolson scheme, (ii) the unconditional stable angled derivative
method, (iii) the reduced phase error split scheme, (iv) the stabilized Leith
Scheme, and (v) the box scheme in the figures (2-11) and (2-12).
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2.5 Numerical experiments

We consider the solution of several sample problems in this section. The
difference equations used will be: (i) Crank-Nicolson scheme (2.1-5), (ii) the
Angled Derivative method (2.1-8), (iii) the reduced phase error split scheme
(2.1-11), (iv) the stabilized Leith scheme (2.4-6), and (v) the box scheme
(2.4-9). Only unconditionally stable methods are used. For a comparison of the
propagation properties of these methods, see figures (2-11) and (2-12).

Each method will be applied to two sample problems. The results are presented
as a verification of the amplitude and phase errors of the numerical scheme as
far as the first sample problem is concerned. The second test problem illus-
trates the accuracy of a numerical scheme when it is applied to a non-homoge-

neous steady-state problem.
The first sample problem (I) is given by:

u, + Ty 0, 08 %1 (2,5-1a)
with initial and boundary conditions given by:

% (05t =1, v (x,0) = 0 I 5-1b)
The solution of this equation is given by:

05 % Dyt
u (x,t) = (2.5-2)

I, s ¢t

which represents the propagation of a square wave.

The second sample problem (II) is given by:
-a(x-0.5)2
ut + Moozt =20 (x-0.5)e * (2.5-3a)
with initial and boundary condition:

u(0,t) = 0, u(x,0) = 0 (2.5-3b)



For sufficiently large values of a a very accurate approximation is given by:

2
u(x,t) = e-a(x—O.S)z_e—a(x-t—O.S) (2.5-4)
Both sample problems are calculated for the Courant numbers Cf = 0.1, 0.5,
2.5, and 4 while Ax = 1/100. The number of timesteps were 500, 100, 50, 20 and

13 respectively. For the methods (i)-(v) the results were as follows:
4. Results for sample problem I

The methods (i) and (ii), for which the results are shown in figures (2-13)
and (2-14), have comparable solutions as far as phase errors are concerned.
Both schemes show lagging phase errors, especially for the small wave numbers.
Method (iii) is considerably more accurate, as figure (2-15) shows. Moreover,
the results of this method remain practically unaltered for 0 < Cf < + 1.5.
This is an advantage for applications with variable coefficients.

The point to point transfer property of method (iv) for Cf = 1 is clearly
demonstrated by figuré (2-16). For large Courant numbers the results seem to
be rather easily disturbed by spurious "wiggles". Finally, figure (2-17) illus-
trates very clearly the leading phase errors for Cf < 1, the point to point
property for Cf = 1, and the lagging phase errors for Cf > 1 of the box

scheme,
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b. Results for sample problem II

This test problem is used to illustrate the effectivity of the methods (i) -
(v) when they are applied to a non-homogeneous stationary problem.

The coefficient a = 2500. The Courant numbers were the same as for test prob-
lem I. The timesteps (K), K = 1000, 200, 100, 40, and 25 were such that at

t = Kt the exact solution has almost reached a steady-state situation. Again,
as the figures (2-18) and (2-19) show, the results of method (i) and method
(11) are similar, especially for small timesteps. For both methods steady
state has not yet been reached.

Figure (2-20) shows that the results of method (iii) are again satisfactory.
The value of the timestep hardly influences the solution, i.e., very fast
convergence to steady state is possible by choosing a large timestep.

Figure (2-21) shows the poor results of method (iv) for large values of the
Courant number. Increasing a makes the results even worse. If sufficiently
large values are chosen for a combined with a Courant number larger than 2,
the amplitude of the wiggles can grow arbitrarily large. It shows that this
method is totally @nadéquate for large Courant numbers, because of the large
number of spurious roots.

Figure (2-22) shows that the box scheme performs quite well. Only for the
Courant numbers 2.5 and 4 has a steady-state not yet been reached after the

observed numbers of timesteps.
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Figure (2-21) Stabilized Leith scheme (2nd order)

A: Cf = 0.1, number of timesteps = 1000

V: Cf = 0.5, number of timesteps = 200

+: Cf = 1,0, number of timesteps = 100

X: Cf = 2.5, number of timesteps = 40

3: Cf = 4.0, number of timesteps = 25
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Figure (2-22) box scheme
A: Cf = 0.1, number of timesteps = 1000
V: Cf = 0.5, number of timesteps = 200
+: Cf = 1.0, number of timesteps = 100
X: Cf = 2.5, number of timesteps = 40
0: Cf = 4.0, number of timesteps = 25

.00



2.6 Concluding Remarks

Several numerical methods for the advection equation were compared that can
all be applied for the approximation of the advection operator of SWE.
Application of the characterisfic interpolation approach combined with oper-
ator splitting does not seem to be very attractive because the order of accu-
racy will be equal to one at most for many practical applications. Adequate
results are to be expected only for small timesteps.

The reduced phase error split scheme shows excellent results both for time-

dependent and steady-state problems.

The sample problems are of only limited value. Moreover, the advect@on operator
is in many cases not the most important part of the total differential opera-
tor of SWE. Additional experience with practical problems for SWE is necessary
for a final choice. Accuracy, efficiency, and robustness are all important for

an approximation method for the advection operator of SWE.



REFERENCES TO CHAPTER 2

1.

2.

7.

9.

ABBOTT, M.B.,

The method of characteristics, in Unsteady Flow in Open Channels edited
by V. Mahmood and V. Yevjevich, Water Resources Publications, Fort
Collins, 1975.

BENQUE, J.P., J.A. CUNGE, J. FEUILLET, A. HAUGUEL and F.M. HOLLY,

New Method for Tidal Current Computation,

Journal of the Waterway, Port, Coastal and Ocean Division, ASCE, 1982, pp
396-417.

COURANT, R., K. FRIEDRICHS and H. LEWY,

Uber die partiellen Differenzen-Gleichungen der mathematischen Physik,
Mathematische Annalen, 100, 1928, pp. 32-74.

(Engl. translation by Ph. Fox, On the Partial Difference FEquations of
Mathematical Physics, IBM-Journal, 1967, pp. 215-234).

FROMM, J.E.,

A Method for Reducing Dispersion in Convective Difference Schemes.
Journal of Computational Physics, No. 3, 1968, pp. 176-189.

GOLDBERG, M. and E. TADMOR,

Scheme Independent Stability for Difference Approximations of Hyperbolic
Initial Boundary Value Problems, I.

Mathematics of Computation, V.32, 1978, pp. 1097-1107.

GOLDBERG, M., ‘and E. TADMOR,

Scheme Independent Stability Criteria for Difference Approximations of
Hyperbolic Initial Boundary Value Problems, II.

Mathematics of Computation, V.36, 1981, pp. 603-626.

GODUNOV, S.K. and V.S. RYABENKI,

Theory of Difference Schemes,

North-Holland Publishing Company, Amsterdam, 1964.

GOTTLIEB, D. and S.A. ORSZAG,

Numerical Analysis of Spectral Methods, Theory and Applications.

Society for Industrial and Applied Mathematics, Philadelphia, 1977.
GUSTAFSSON, B.,

The Convergence Rate for Difference Approximations to Mixed Initial
Boundary Value Problems. :

Mathematics of Computation, V.26, 1975, pp. 396-406.



REFERENCES (continued)

10.

11,

12,

13,

14,

15,

16,

17,

18,

HOLLY, F.M. and A. PREISSMANN,

Accurate Calculation of Transport in Two Dimensions,

Journal of the Hydraulics Division, ASCE, V.103, 1977, pp. 1259-1277.
KREISS, H.O0., B. GUSTAFSSON and A. SUNDSTROM,

Stability Theory of Difference Approximations for Mixed Initial Boundary
Value Problems, II.

Mathematics of Computation, V.26, 1972, pp. 649-686.

LAM, D.C.L. and R.B. SIMPSON,

Centered Differencing and the Box Scheme for Diffusion Convection Prob-
lems.

Journal of Computational Physics, No. 22, 1976, pp. 480-500.

LAMBERT, J.D.,

Computational Methods in Ordinary Differential Equations,

Wiley London-New York, 1973.

MILLER, J.J.H.,

On the Location of Zeros of Certain Classes of Polynomials with Applica-
tions to Numerical Analysis.

Journal Institute of Mathematics and Its Applications, No. 8, 1971, pps
397-406.

MORTON, K.W.,

Petrov Galerkin methods for non-self-adjoint problems,

Procs. of the 8th Biennel Conference on Numerical Analysis, Dundee, 1979,
Springer, 1980.

TRAPP, J.A. and J.D. RAMSHAW,

A simple and Heuristic Method for Analyzing the Effect of Boundary Condi-
tions on Numerical Stability.

Journal of Computational Physics, V.20, pp.238-242, 1976.

RICHTMYER R.D. and K.W. MORTON,

Difference Methods for Initial-Value Problems,

Interscience Publishers, Wiley, New York-London, 1967.

ROACHE, P.J.,

Computational Fluid Dynamics,

Hermosa Publishers, Albuquerque, N.M., 1972.



REFERENCES (continued)

19.

20.

21.

22.

23.

24,

ROBERTS, K.W. and N.O. WEISS,

Convective Difference Schemes,

Mathematics of Computation, No. 2, 1966, pp. 272-299.
STELLING, G.S.,

Improved Stability of Dronkers Tidal Schemes,

Journal of the Hydraulics Division, ASCE, V106, 1980, pp.
VREUGDENHIL, C.B. and J.H.A. WIJBENGA,

Computation of Flow Patterns in Rivers.

Journal of the Hydraulics Division, ASCE, V108, 1982, pp.
WEARE, T.J.,

Instability in Tidal Flow Computational Schemes,

Journal of the Hydraulics Division, ASCE, V102, 1976, pp.
WESSELING, P.,

1365-1379.

1296-1310.

569-580.

On the Construction of Accurate Difference Schemes for Hyperbolic Partial

Differential Equations.
Journal of Engineering Mathematics, V7, 1973, pp. 19-31.
WIRZ, H.J., F. DE SCHUTTER and A. TURI,

An Implicit, Compact, Finite Difference Method to Solve Hyperbolic Equa-

tions,

Mathematics and Computers in Simulation, 1977, pp. 241-261.



- =

3 Implicit finite difference schemes for the linearized shallow-water

equations

3.0 Introduction

In this chapter we will treat several numerical schemes for the numerical
approximation of the so-called "frozen coefficient" shallow-water equations
(SWE).

These linear equations are given by:

= (3.0-1a)
u, + qu + Vuy g Cx Qs
= (3.0-1b)
Wy = Vvy o va + g Cy O
= (3.0-1c)
Ct e Utx o VCy ¥ Hux A Hvy 0.

where:

u (x,y,t) = depth averaged velocity in x direction,

v (X,y,t) = depth averaged velocity in y direction,

€ (x,y,t) = water elevation above some plane of reference,
H = constant averaged depth,

8 = acceleration due to gravity and

U,V are constants such that U2 + v2 < gH, assuming subcritical flow.

In section 1 we introduce the concept of '"grid staggering" for semi-discrete
approximations of (3.0-1) without advection terms.

In section 2 we will treat several implicit finite difference schemes for the
approximation of (3.0-1) that are well-known from the literature. For some of
these schemes the advection terms are approximated differently than the numer-
ical treatments of the other first order derivatives, i.e., these schemes are a
composition of several numerical methods. The resulting schemes will be called
"composite schemes". Each numerical method of this section will be discussed
briefly. Fach scheme has disadvantages that hamper their application to prac-
tical problems in civil engineering.

In section 3 we propose two implicit composite finite difference schemes for
the approximation of (3.0-1) of which the advection operator is approximated
by methods proposed in chapter 2. The first scheme is very efficient but
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conditionally stable. The second scheme is unconditionally stable but requires
more operations per timestep than the first method. The approximations in this
chapter are based upon the method proposed in chapter 2.

The stability analysis of these schemes is given in section 4. In section 5

the limitations of ADI schemes with respect to accuracy are discussed.

3.1 Grid staggering

If we neglect the advection terms of (3.0-1), i.e. the terms given by

Uug, Vuy, Vvy, Uvg, UG, ch, we obtain the following equations:

u + gcx = 0, (3.1-1a)
Ve + gCy = 0, (3.1-1b)
Ct + Hux + Hvy = 0, (3.1-1¢)

Suppose (3.1-1) is ‘to be approximated numerically. To this end first the
spatial grid of figure (3-1) is defined.

n+1 Cy8, Vv A B L8,V

n+ 4 C,u,v C,u,v C,u,v Ay

n Suu, v C,u,v Ciu,v l
m+ mtl1

1
%
\

Figure (3-1) Spatial non-staggered grid

In this section we consider only spatial discretizations.

For (3.1-1) a semi-discrete approximation is given by:

u + gl =0, at mn (3.1-2a)
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i (3.1-2b)
Vg + gcoy 0, at m,n

2. (3.1-2¢)
Ct + Huox + Hvoy 0, at m,n

Rhevesn = .00y 4,505 13, 20,

W ®asaey dor I, M 2, vus,

ut at m,n denotes %; “m,n(t)' v, and g, are defined accordingly

cox at m,n denotes (cm+i,n_Cm-%,n)/Ax ,

uox and vox are defined similar to Cox s
Coy at m,n denotes (Cm,n+§-cm,n-§)/Ay e
uoy and voy are defined similar to coy .

»
£ boundary conditions are not taken into account, then, because of the spe-
cial structure of (3.1-1) combined with the use of central differences in
(3.1-2), this latter equation consists of four sets of independent equations.
The four grids, each of which relates to one independent set, are given by
figure (3-2).
If one chooses just one of the four possible grids, which are all equivalent,
the numerical solution that belongs to that grid is just as accurate as the
numerical solution that belongs to the original grid. The accuracy is main-
tained by staggering the grid according to figure (3-2). However, the number
of computational values is decreased by a factor of 4. This explains the
extensive use of staggered grids for the approximation of the SWE ever since

Hansen [9].
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n+1 & u C v
n+ 4 v v u C u
n u v
m m+ m+1 m m+4 m+1
n+1 v v u L u
n+ 3} C u & v
n v v u u
m m+ m+1 m m+4 mt+1

’\_u‘ s ic"'("_"é LSty $n80 co%s0
]
v l v
i
k)t
e
vt + gcoy =0

Figure (3-2) Staggered grids

Another advantage of grid staggering is the simplicity of the implementation
of boundary conditions; if a '"u boundary condition'", i.e. at the boundary the
velocity in the x direction is given, is located in a u point of figure (3-2),
a "v boundary" at a v point or a { boundary at a { point, then special bound-
ary schemes are not needed. From this it follows that for stability, at least
for 1D problems, only the Cauchy problem needs to be investigated, see Kreiss

[10]. This means that for a staggered grid a certain class of boundary condi-
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tions does not introduce additional stability problems.

The last advantage of staggered grids that we describe in this section is the

exclusion of spurious oscillations. Consider a linearized one-dimensional SWE:

u % g g = 0, (3.1-38)
5 X
= 3.1-3b)
L, +Hu_=0, (
where 0 < x < 1 and boundary conditions are given by:
¢ (o,t) = eSt, u(l,t) =0 (3.1-3c)
The semi-discrete approximation of (3.1-3) similar to (3.1-2) is:
u +gf =0, atmym=20, $, co0e, M- %
N i (3.1-3a)
C_*' ZCO = C*
G- SUHG AN et R e M
t ox (3.1-3b)
. B AR
(3.1-3c)

g, () = *, wy(t) = 0
where Ax = 1/M

The grid of this scheme is defined by figure (3-3).

u, ¢ u, § u, §
m mH m+1

Figure (3-3) One-dimensional grid

In a search for normal modes of the form:



I

[u (), £ (017 = [, E17e%"" (3.1-4)
we substitute into (3.1-3)
T 5 el 5 |
[ug(t), Cult)]” = [uy, Col e (3.1-5)
This yields the following resolvent equation of (3.1-3):

su+gg = 0, at m, m=0,%,...,M=%

- (3.1-6a)
C-i =20, Ci
BE + H ;ox =0, at m, m=},1,...,M
(3.1-6b)
Unp = 2oy T Uy
E =1, =0, (3.1-6c)

The solution of (3.1-6) is given by:
Ym 1 2m 2m 1 2m 2m
F o1 e bg ] Ik ™ +p )™ 4 § g fagng® 48y (=) (30D
m /g -%g

where z) 2 are roots of the characteristic equation of (3.1-6) given by:

Axsz g(zz-l)
-0 (3.1-8)
2
H (z -1) AXSz
and @, and Bl 2 are constants determined by boundary conditions and
’ ’

boundary schemes

From (3.1-7) it follows that if m is an integer, then (3.1-5) can be written

as:

(t)
[::(t)] - est{[/é ] (ap+ B)) 2,2 [_,/_*11 1 Gapt B, 227 g

4 g
while if m is an odd multiple of 4 then (3.1-5) becomes:
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u ()

st 1 2 1 2m £
[Cm(t)] =e {[ H 1 (=B 2z, m o, [_¢§] (e, = By) 25 } (3.1-9b)

g g

In general B1,2 # 0, and we see that a spurious "2Ax wave" will be present in
the "non-staggered" grid. The amplitude of this wave depends on the boundary
conditions and the value for s, which is determined by the wave periods of the
boundary conditions.

Summarizing, for the simple SWE (3.1-1) two independent sets of equations
result in the l-dimensional case and four independent sets in the 2-dimen-
Sional case. The differences between the solutions may become apparent in the
result of the calculations as spurious "2Ax waves", to an extent determined by
the boundary conditions.

If only one of the sets is chosen, these spurious solutions are impossible.
This follows immediately from a general solution for a staggered grid which is

given by:

u (t) Yz /z
[c"’z) 1 =% {1 = L Tl 3 £ L Ty %y ) (3.1-10)
m /E. %g

2 2
where Zg ™ 2] , Zp = 2z, and Ya,p are constants.

Obviously this general solution does not contain spurious oscillations.

3.2 Review of existing implicit methods

In this section we describe several FDMs for the approximation of PRt ave
Well-known from the literature. In the original papers these FDMs are -
scribed for nonlinear SWE with various dependent variables, for example,

(us v, C)T, (uh, vh, C)T or (u, v, z/gh)T, where h denotes the total depth of
the fluid. To explain the relevant aspects of the methods it is sufficient to
describe the form they take when they are applied to (3.0-1). We rewrite (3.0-
1) in the following form:

w +Uw +Vw + Aw + Bw =0 {3sa-12
e AL LS S SR

where we (u, v, C)T9
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We will describe the FDMs proposed by Gustafsson [8], Elvius and Sundstrom
[3], Leendertse [14] and Benqué et al,[1].

a. Gustafsson's method
This method is based upon a non-staggered grid as given by figure (3-1). When

applied to (3.2-1) this method is a straightforward ADI method consisting of

two stages which are given by:

Stage 1:
k: k k:
(Ek+i_ EF)/QT + Ug°:%+ Vg0y+ Ag°:%+ Bg§y= 0, at m,n (3.2-2a)
Stage 2:
(Ek*'l- _gkﬂ)/h + Uz:;:%+ Vylf;1+ Ag:;‘j+ B_vglé;l= 0, at m,n (3.2-2b)
h t d t 3
where w at m,n denotes g, nr Yo ar Bginl s
Wy at m,n denotes (w %’n—gm_%’n)/Ax s

and Yoy at m,n denotes (Em,n+§_ Em,n-i)/Ay .

For nonlinear SWE another method has been proposed by Fairweather and Navon
[4]. If this method is applied to (3.2-1) then it also yields (3.2-2).

A similar method for a non-staggered grid has been described by Gerritsen [5].
The methods of Gustafsson [8] and Fairweather and Navon [4] are unconditional-

ly stable when they are applied to (3.2-1).

The FDM (3.2-2) is unconditionally stable but is not very efficient because of
the non-staggered grid. The solution contains spurious roots as explained in
section 3.1, and the structure of the implicit equations is such that the

method for the solution of linear equations should be chosen carefully in
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order to prevent the amplification of rounding errors.

If y2y y2 < gH the advection terms given by Uw and Vi, need not be approxi-
mated by the same method as Agx and Bgy. Practically the same accuracy can be
obtained by a slightly different approximation of the advection operator. In
that case a more efficient staggered grid can be applied. If the time-discre-
tization of the advection operator is different from the time-discretization
of the other part of the differential operator, the resulting linear equations
can be solved very efficiently. An example of such a composite FDM has been

Proposed by Elvius and Sundstrdém [3].
b. Elvius and Sundstrdém's method

This method is based upon the grid of figure (3-3).

Timesteps k, k = 1, 2,... Timesteps k + 4, k = 1, 2,c.0
n+ 1 C u c B A § v
kg v v n+ % u % u
a G u o n v
m m+} m+1 m m+t ml

Figure (3-3) Elvius and Sundstrdm grid.

For this grid the number of grid function values is half as much as for the

non-staggered grid of figure (3-1).
The Elvius and Sundstrdm method is a combination of the mid-point rule,
If the ADI pertubation of the trape-

see

Lambert [12], and the trapezoidal rule.
zoidal rule is not taken into account their method is given by:

u 4UT VX +get =0, at mtb,n,k+ and (m,n+d, k) (3.2-3a)
ot~ oK oy  ox

v X Y +gC£ =0, at m,nt}, k+% and (m+}, n, k) {3:.2=32
ot oy . ox "oy
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Cot+UEZx+VE§y+“sz+H;2y= 0, at m, n, k and m+i, n+d, k+i (3.2-3c)

ket kedy
m m,n

where: u- at m,n,k denotes 4(u b
b

vt and Et are defined in the same way as ot

k k-
u,, at m,n,k denotes (“m,n - um‘:)/t

V . and Cot are defined in the same way as u

ot ot
u at m,n,t denotes *(um+&,n + um—i,n)
W at m,n,k denotes % (uz’n+% + u;,n—i) and
I

v ;y’ Ex and Ey are defined in the same way as u* and W

The stability condition of (3.3-3) is given by:
t/Ax max ( |[U],|V]) <1 (3.2-4)

This method is more efficient than (3.2-2) because of the less complicated
linear equation and the decreased number of grid function values by a factor
of 2; for many practical applications, the stability condition given by (3.2-
4) 1is not too restrictive. Yet a fully staggered grid will allow even more

efficient methods. A very well-known example is the following method:

c. The method of Leendertse

The Leendertse [14] method is probably the most widely used method in civil
engineering applications, many of which have been reported. See Leendertse et

al. [15]. It is part of a computer modelling system described by Leendertse et
al« [16].

The method is based upon a fully staggered grid as given by figure (3-4).
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Birk-1 G u L
n+ v v
= c u c

m m+:  mtl

Figure (3-4) Grid of the Leendertse method
Application of this method to (3.2-1) yields:
Stage 1:

u[O] = uk-*, C[ol = Ck; for.p.= .l seiny Rt

T e 1 =

AL PR u: Vo 1ac e c® *)ox- 0, at mH,n (3.2-52)
"[—'pc Sl

(4 e ]-C )/it + UC T vc Huizl + Hv y=0» at m,n (3.2-5b)

S (P] e [)

’
Stage 2:

v[ol- vk, Clo]= Ck+&; for p =1, «es, P:

k RO T S 2 k =
(v[p]—v Yl Vv:y+ Uv:x + }g(;[p]+c ) ox= 0» at m,n+4 (3+2=5¢c)
(C P kﬂ)/i‘f 2 o UC Oz_ u + HV[§]- O’ at m,n (3.2-5d)

vk+1_ V[P]' Ck+1= C[P].

where u* =} (u[p-1]+ uk-*) and

il E (v[P'1]+ V).
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Note that Leendertse [14] reports a slightly different approximation of the
advection part based upon the work of Grammeltvedt [7], but to explain the main
ideas of Leendertse's method this is not relevant.

Weare [20] has shown that this scheme is unconditionally unstable for P=1 and

can therefore be used only when stabilizing friction terms are included. Also,
for P=2 this scheme is not likely to be stable because the RK2 method, which

is applied for theé time discretization of the advection part, is only condi-
tionally stable and its stability region does not contain any part of the
imaginary axis, see figure (1-3). The scheme is likely to be stable only for
the case without stabilizing friction terms, if it is '"corrected to conver-
gence'", see Lambert [12], p86. This may entail a large number of iterations,

which decreases its effectivity.

Benqué et al. [1] claim that the ADI structure could decrease the accuracy
considerably when large timesteps are applied. They propose a completely
implicit method based upon operator splitting, of which we will give a very
brief review:

d. The operator splitting method of Benqué et al.

The grid employed by this method is given by figure (3-5).

n+1 T C 4

n+ % u,v u,v

n 4 g c

n -4 u,v u,v

n-1 4 c c
m-1 m-% m m+} m+1

Figure (3-5) Grid for method of Benqué et al. [1]
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This method consists of the following steps: (i) the advection step, (ii) the
diffusion step and (iii) the propagation step.
When this method is applied to (3.2-1) we only need the advection step and the

Propagation step. For the definition of these steps (3.2-1) is split according
to:

*
- 3.2-6a)
W, + wa + wa Oia (
* *
- 3.2-6b
W + Awg + Bu =0 . ( )

After this the advection step is performed by approximating (3.2-6a) by a
Stabilized characteristic interpolation method as described in chapter 2.
During this step the grid function values are calculated at the u,v points of
figure (3-5).

The propagation step implies the approximation of (3.2-6b) at the { points of
figure (3-5). If values needed for the evaluation of the FDM are missing, they
are calculated by interpolation of grid function values at adjacent grid-
points,

By elimination of the unknown values for u and v an implicit set of equations
results where the values for ¢ are the unknowns. The method is implicit and
because an ADI type of method is not used the implicit equations involve all
8rid points. The equations are solved by an iterative method based upon conju-

8ate gradients.

After the calculation of the { values, values for u and v at the "u,v" points
are calculated. Again missing values are calculated by interpolation based

upon values at adjacent grid points.

Formally the stability of this method is unconditional. However, we believe

the advection step imposes a practical timestep limit given by:

v Max ( |U| /ax, |V] /ay) < 2 (3.2-7)

The reason for this timestep limit was discussed in section 2.4. For steady-

State problems the timestep has to be chosen much smaller than (3.2-7) allows
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in order to avoid 1 dependent numerical viscosity, see Roache [19] or section

2.4,

In view of (3.2-7) or the much more severe accuracy limit for steady state
problems the method does not seem to be very effective (although excellent
results for practical problems were reported by Benqué et al) especially if
one takes into account the computational work needed to solve the fully im-
plicit propagation step. An approximation method for SWE completely based upon

characteristics has been given by Daubert et al. [2].

0f the methods just considered, the Leendertse method seems to be the most
efficient, because of the fully staggered grid and the simple implicit equa-
tions. Another advantage 1is the widespread experience with this method for
practical applications. Disadvantages are (i) formal instability because of
the approximation of the advection operator, (ii) second order accuracy is ob-
tained only if P » 2, (iii) stable results could imply a large number of

iterations, which decrease the efficiency.

3.3 On the stabilization of Leendertse's method

In this section we propose two possible stabilizations of the Leendertse
method, called Ml and M2. The first method, M1, is based upon the same spatial
discretization as has been used for (3.2-5) and is given by:

= —y £ “
ut + Uu°x+ Vuoy+ gcox 0, at mt}, n (3.3-1a)
+ Y + T + = 0 + o
v VVoy L gcoy 5 at m,n+} (3.3-1b)
C + WX +V&0 +Hu +Hy =0, at m,n (3.3-1¢)
t ox oy ox oy

For the approximation of the advection operator we propose the two stage
Angled-Derivative method given by (2.1-7). This yields the following approxi-
mation method for (3.0-1):
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Method Ml:

Stage 1:
k+*—u )/}1+Uu:x+Vuk+*+ ng+%= 0, at mH,n (3.3-2a)
ox
k+% k)/% +Vvk;++Uv +gc v 0, at m,n+} (3.3-2b)
k k ik
@ +*‘§ )/§1+Uc+x+ Ve _ +& +Hv oy~ 0s at mn (3.3-2¢)
Stage 2:
k+1 k k+1 k k- =
(u =u +§)/i1+ﬂu_x +Vu+;*+gc°:*= 0, at mHi,n (3.3-2d)
(vk+l +*)/i +Vv k+% Ex +gt;oy = 0, at m,n+} (3.3-2e)
k+1 k =
1G4 +*)/hwz;_x +v:;+y H voy 0, at m,n (3.3-2f)
wh s -
ere: u_ at m,n denotes (um+l,n um’n)/Ax,
u at myn denotes (u =-u )/Ax,
=% m,n m—-1l,n
u+y at m,n denotes (um'n+1-um’n)/Ay,
u  at m,n denotes (u -u )/ by,
-y myn m,n-1 dingly
and Vot Toos C+x' C-x’ ¥t 3 C+y and C—y are defined accordingly.

The equations (3.3-2a) and (3.3-2c) are coupled implicitly. If the evaluation

of the grid function values concerning these equations starts at the row with

the lowest number of n, the first stage of the Angled Derivative method 1is

effectively explicit as the calculation proceeds in the increasing n direc=

tion.

; o
For the same reason the evaluation of (3.3-2b) has to start at the lowes

number for m, of (3.3-2e) and (3.3-2f) at the lowest number for m, and (3.3-

2d) at the lowest number for n. If these simple rules are implemented, (3.3-2)

constitutes an effectively partially explicit, and partially implicit, o

very efficient FDM. The stability conditions for (3.3-2) are given by:

Ut /ax > -1
(3.3=3)

Vi /Ay > -1
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This is due to the CFL condition for the advection operator as has been ex-

plained in section 2.2.

Method Ml is second order accurate; the accuracy is comparable to the Elvius
and Sundstrdm method and the stability condition (3.3-3) is equivalent to
(3.2-4). The efficiency is doubled, however, because (3.3-2) needs half as
much grid function values as (3.2-3) and the tri-diagonal structure of the im-
plicit equations is similar for both methods.

Method M1 is an improvement over the Leendertse method given by (3.2-5) as
well because iterations of the implicit equations to increase the stability

are not necessary.

In section 3.4 it will be argued that the Cauchy-problem for (3.3-2) is uncon-
ditionally stable.

As will also be shown in section (3.4) that this method has eigenvalues only
on the unit circle. Hence, the method is non-dissipative. This might cause
spurious wiggles because of the advection operator approximation. Also (3.3-3)
could be too restrictive for several possible applications. The advection FDMs
of chapter 2 allow a large number of possible advection operator approxima-
tions, however.

The second stabilization of the Leendertse scheme that we propose (method M2)
is based upon approximation of the advection operator by the Crank-Nicolson
scheme given by (2.1-5) and the dissipative reduced phase error scheme given
by (2.1-11). To keep the numerical dissipation as small as possible, only Vuy
and Uvy will be approximated by this last method, although (2.1-11) introduces
only a fourth order dissipative term. The resulting scheme is given by:

Method M2:
Stage 1:
k k T k k+
(u +*-u,)/h; rllip o s Soy(V,u ) + gCOX%= 0, at m+i,n (3.3-4a)
k: k —xFEy k+ k
(v +\}—v )/i1:+Vvoy + S+x(U,v 1}) + gcoy“ 0, at m,n+} (3.3-4b)
k+ k HX VY k+% k
AR AR TS Yog: Vcoy gt HV0y= 0, at m,n (3.3=4c)
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Stage 2:
k+1  k+d “kF1X k+1 k+3 5
(v -u Vit + S+y(V,u ) + gL, = 0, at mH,n (3.3-4d)
k+1  k+i k+17 k+3 k+1 33
v * v )it + vvoy + Sox(U,v ) + gcoy = 0, at m,n+} (3.3-4e)
k+l k+i KHX TR ket kel 3.3-4f)
{4 L )it + Ucoy i vcoy ot - Hvoy = 0, at m,n (
where:

Soy(V,u) at m,n denotes V(u 4u

- )/12Ay and
m,n+2+ um,n—2

m,n+1_4um,n—l

- + 2Ay if V> O
( 3um,n 4um,n—l um,n-2)/ y

S (V,u) at m,n denotes

-

u )/2ay 1f V. < O

V(—3um + 4u 19k

sh m, n+1

The functions Sox (U,v) and S+x(U,v) are defined accordingly.
The implicit equations that result from (3.3-4) are all tri-diagonal if they
Start at the proper row or column number depending on the sign of U or V.

We will deal with the boundary treatment in chapter 4 where (3.3-4) will be

extended to an approximation method of the nonlinear SWE.

3.4 Stability analysis of stabilized versions of Leendertse's method

In this section we study the G-R stability of (3.3-2) and (3.3-4). The stabil-
ity of the Cauchy problem will be studied, in fact only the Von Neumann condi-
tion.

Verification of the G-R condition for initial-boundary value problems fis
Probably not only very complex but also not defined. The theory of Godunov and
Ryabenki [6] or of Kreiss et al. [11] has been developed only for problems
with one spatial dimension. A recent paper of Michelson [17] is perhaps the

first to extend this theory to multidimensional problems.

For implicit methods we usually try to prove unconditional stability. In order
to simplify the stability analysis we first give a few definitions and lemmas.
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Definition (3.4-1):

If A is a matrix with complex-valued entries ajj, then its adjoint AY s
defined by a?j- Eji’ where the overbar denotes the complex conjugate.
Definition (3.4-2):

If A is a matrix which has the property that it commutes with its adjoint,

i.e. AHA = AAH, then A is called a normal matrix.

Definition (3.4-3):
If A is a matrix for which AHA = AAH = I, where I denotes the identity matrix,

then A is called a unitary matrix.

Lemma (3.4-1):
If A is a normal matrix then AHA_I is a unitary matrix.
Provll: (A AR w AT TRTA S A K s Ry

H =R =]
=AA A A=1.

Lemma (3.4-2):

If the matrices A and B are unitary matrices then the matrix AB is also a

unitary matrix.
H H H
proof: (AB) (AB) = ABB A = I

Lemma (3.4-3):

The eigenvalues of unitary matrices are on the unit circle.

proof: (Aw, Aw) = (AHAE,E) = (w,w) VYw, where w denotes an arbitrary vector
* Ja =3

The lemmas given above are simple and given in almost any introductory mono-

graph on linear algebra.

To study the stability of the Cauchy problem for (3.3-2) we look at solutions
of (3.3-2) which have the form:

~k ~k ki T “k ‘k k.T i(d mAx + o nAy)

e Yo b al = OV ¢

(3.4-1)
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where 0,s 0, are real numbers.

Substitution of (3.4-1) into (3.3-2) leads to:

;k+l ¥ A—l B c—l D ;k - G;k (3.4-2)

-~ ~

where @ = [u, v, é]T and G = A-I B C—l D is the well known "amplification

matrix", see Richtmyer and Morton [18].

The matrices A, B, C and D are given by:

- o 1S =
F- 1+a 0 0 1+; 0 —g% Dox
Fegt 0 1+a g—’ziﬁoy . 0 14b 0
=
2 ;Aoy e '“%Box : i .
pt i i Py :
1+b 0 &30, % 1+a 0
C = 0 1+b 0 , D= 0 e -gr;-f)oy
i . *
L}%—nox 0 1+b 0 B, e

U
where: g = %K; [1-cos (cl Ax) + isin (cx1 Ax)],
T
b = Ty V [1 - cos (o, Ay)+ isin (o, AY)],

D, = isin (o; % &%) / (4 Ax),

~

Doy = isin (op % Ay) / (4 Ay) and

R ~

a, b denote the complex conjugates of a and b.

Stability of the Cauchy problem is ensured if || GX|| is bounded V k.
To verify this we write G in the following form:
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Bwdh AT AL O R

e s Tyt o

1 1 s )

wAKY S BE G DS
1 0
where A =|0 1 0 and conecequently:
H
0 0 -
i ‘%
142 0 o 3] 1+b
- z D ¥
A' 0 1+4 5 /8 Doy | 5 C 0
x D T 5
0 5 /8 Doy 1+ A 2 YgH D

D' = A’H and B' =-C'H
Hence G can be written as:

Cathl 0

Equation (3.4~4) implies the following relation:

16 fisfia AL fler ooty g art aet < A o1

It is easy to see that A' and C' are normal, hence C'H o

unitary.
From this and from (3.4-5) it follows that:

k - -
Il l<lin ar~tfpar® A=t )], v x

8 iyt T roanT! -

1+b

which proves the stability of the Cauchy problem for (3.3-2).

(3.4-3)

4 A
7 V/8H Doy

l+g 5

(3.4-4)

(3.4=5)

H 1

% and A' A'  are

(3.4-6)

The eigenvalues of G are on the unit circle, as can be seen as follows:
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1 1 1

cvmar AThate

P S (3.4-7)
Because A' A-l is a similarity transformation it follows that G' and G have
the same eigenvalues. G' is a product of two unitary matrices which means,
according to lemma (3.4-2), that G' is also a unitary matrix. According to
lemma (3.4-3) G' has eigenvalues on the unit circle which means that the

eigenvalues of G are also on the unit circle.

The amplification matrix of (3.3-4) can be written in the form of (3.4-3)

with:
- - e T ey
a' 0 0 1 0 -?gn DOX
. o
£ 0 1 f/gH Dc.y , B' = 0 b 0 ’
T = D - D 0 -30 D
0 5/gH D 145V Dy _%’/g“ Dox o e i
‘ -
-~ = =
T = 4 0 0
1 0 Vg Dy
¢ = 0 e 0 , D' = 0 : =VeR B =1e
oL - 0o -I/ga D 1-W D
e D 0% ¥R L % oy~ + 3 iy
— e oy =
where D, = isin (o, Ax)/Ax,
Djy = isin (o, Ay) /Ay,
G T -
&1 R, Y3 Yy
RN, Mmoo e
b =¥ h, 30 Sox?



w
(]

1z
[l

oy

2
[(1 = cos oy Ax) +

isin o) Ax (2 + cos

isin o, Ay (2 + cos

S = [(1 - cos g, Ay)2 s

Similar to (3.4-5) the following
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oy Ax) / 3Ax,

oy Ay)/3Ay.

relation holds:

k-1
eI 7 TRt T O | | B |

Hence, for stability of (3.3-4) it is sufficient that
-1 -1

[[B* €' 7|l< 1 and|/ D' A' [< 1.

To prove this we write D' and A' in the following partitioned form:

Al
\A' = a
0
where:
1
A' =
s - »
E/gH Doy

or:

With lemma 3.4-1 it follows that

isin o) Ax (2-cos o, Ax)]/Ax,

isin o, Ay (2 - cos UZAY)]/AY and

= .
-3 VgH D

v S
1-2 v D1

9

4

(3.4-8)

(3.4-9)
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|| o A'_IH < Max ( |d'/a'|, 1) (3.4-10)

Because |d'/a'| < 1, as can easily be verified, it follows that || D'A'-IH 1

Similarly one can prove that || B' C‘_l” < 1, which completes the proof of the

stability of (3.3-4) for the Cauchy problem.

3.5 An aspect of the accuracy of ADI schemes for shallow water equations

If advection terms are omitted then every scheme described in this chapter,
except (3.2-6), which concerns the method of Benqué et al [1], is an ADI per-
tubation of the Crank-Nicolson scheme. This means that the wave propagation
properties are given by figure (2-1) for Cf < 4, and by figure (3-6) for
Cf < 20. If these figures are applied to SWE the Courant number Cf is defined

by:
Cf =1 v/gH / Ax (3.5-1)

Note that for 2-D problems the Courant number is defined as

Cf = 1/gH (L2 + —17)*.

Ax Ay
For the calculation of the wave propagation properties a uniform depth and an
infinite spatial domain in all directions has been assumed. For practical
applications this is never the case. Benqué et al [1] show that ADI schemes
for geometries with a non-uniform depth badly represent the flow patterns for

very large timesteps. (Cf = 96, see Benqué et al. [1]) We will now give an

explanation of this phenomenon for complicated geometries.

Consider for example the geometry of figure (3-7). Suppose that a large
Courant number is used, such that from an analytical point of view point P
should be contained within the region of influence of Q and vice versa within
one timestep. The analytical regions of influence are the characteristic cones
of P and Q. The numerical region of influence of point P during one complete
timestep, however, is the shaded area of figure (3-7), which does not contain

Q. Although this does not cause instabilities, inaccuracies are to be ex-

Pected.
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Figure (3-6) Propagation properties of the Crank-Nicolson scheme
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Figure (3-7) Example of complicated geometry.

To increase the accuracy the timestep has to be chosen such that with one
timestep, also analytically there is no influence from P onto Q and vice

vetrsa. Another example of this possible inaccuracy is the "zig-zag" channel of

figure (3-8). J[ e

P B

+ ¥ - o+
phs o R gy e
- ) i P [

: : */ 4 numerical region of influence during one
.L.!*...______k_._l V/ j

| /jcimestep

Figure (3-8) '"zig-zag" channel

The shaded area of figure (3-8) involves only two grid spacings. This means

that for Courant numbers larger than two the numerical solution must be inac-

curate for this example.
We believe that the inaccuracies as observed by Benqué et al. [1] are for a

similar reason.
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Generally speaking, phenomena of this kind limit the maximum timestep of ADI
schemes. For this reason Benqué et al. [1] propose a fully implicit scheme
without ADI structure. The timestep limitation due to the advection step of
their method is probably even more restrictive than the restrictions due to
the ADI structure. Also taking into account the increased computational ef-
fort, with respect to both storage and computing time, required by the itera-
tive method to solve the fully implicit equations, it is questionable if this
method is efficient compared with an ADI method, despite smaller timesteps

needed in the latter case for accuracy.

3.6 Concluding remarks

1. The use of staggered grids is found to be very effective for the discre-
tization of the SWE. If advective terms are omitted then the accuracy is
the same as for a fully non-staggered grid; the number of grid points
however has been reduced by a factor of 4. Moreover, the use of staggered

grids reduces the possibility of spurious "2Ax waves'.

2. For complicated geometries the maximum timestep for an ADI scheme is lim-
ited because of accuracy. The timestep must be chosen such that within one
timestep the domain of dependency of a point is included in the numerical
domain of dependency. Within one timestep, an ADI scheme does not always
include the complete domain as numerical domain of dependency. This is an

essential difference with the unpertubated Crank-Nicolson schemes

3. The "Angled Derivative method" and the third order reduced phase error
method of chapter 2 are efficient methods for stabilizing the Leendertse
scheme. The Angled Derivative method is more efficient, but the slightly
dissipative character of the reduced phase error method propably makes the
method more robust. Computational experiments with nonlinear SWE showed
that the latter method increases the computational overhead less than 6
percent compared with the unconditionally stable Angled Derivative method.
In fact with the methods described in chapter 2 it is possible to stabilize
the Leendertse method in many ways. Whith'possibility is most satisfactory
for practical problems remains a question that can be answered only by

practical experience.
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4 A finite difference method for nonlinear shallow water equations

4.0 Introduction

In this chapter we describe a nonlinear extension of the linear FDMs of the
Preceding chapters to the nonlinear SWE given by:

upt g + v - fv 4+ gg e (w0 ) = 1) aio-ta)

208 2
v+ vvy+ uv, + fu +gcy+ gv (u +v )*/(C R)=:v (vxx+vyy) = F(Y) (4.0-1b)

Ct > (Hu)x + (Hv)y =0 (4.0-1c)

where: = velocity in x direction,

u
v = velocity in y direction,

¢ = waterelevation above some plane of reference,
h

= waterdepth below some plane of reference,
H=h+ { = total waterdepth,
f = coriolis parameter,
g = acceleration due to gravity,
C = Chezy coefficient for bottom roughness,
F(X ¥) = external forcing functions of windstress or barometric
pressure

and v = viscosity coefficient.

In order to make a choice for a FDM, we adopt the following criteria:

l. The numerical solution should be sufficiently accurate. Hence, the method
should be consistent to a sufficient order and stable. According to practi-
cal experience second order accuracy is satisfactory. It is also necessary

that the numerical solution is not greatly influenced by spurious solutions

and rounding errors.

2. The method should be robust. In our case this means that the method should
be applicable to a wide raﬁge of practical 2-D flow problems in ecivil
engineering such as tidal problems in coastal seas and estuaries with tidal

flats, model problems in tidal flumes, or steady state problems in rivers.
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3. The method should be computationally efficient. Efficiency should not be

obtained at the cost of robustness, so robustness has a higher priority.

4. The numerical treatment of the boundary conditions should be such that the

overall accuracy and efficiency are not greatly decreased.

Robustness excludes the use of explicit methods. The FDM given by (3.3-2) has
moderate stability conditions and is very efficient. Nevertheless we choose a
nonlinear extension of (3.3-4) for the numerical approximation of (4.0-1),
even though a nonlinear extension of (3.3-2) would be twice as efficient per
timestep. This is because of the robustness of (3.3-4), which has been demon-

strated by extensive numerical testing.

In the first section we discuss a few general aspects of nonlinear extensions
of linear FDMs. The main ideas will be illustrated by means of a simple non-
linear equation.

In section 2 we propose a FDM for the approximation of (4.0-1). This choice is
based partly on the results of the investigations described in the preceding
chapters and partly on extensive testing with practical problems. The approxi-
mation of each term of (4.0-1) is discussed separately. For brevity we des-
cribe only the results of these tests.

Sections 3 and 4 deal with the numerical approximations of (4.0-1) near the
boundaries. The boundary approximations are based upon a heuristic princiﬁle
described in section 3. This section also describes the boundary treatment
near closed boundaries. Section 4 is devoted to open boundaries.

In section 5 the numerical treatment of tidal flats is discussed. All implicit
equations are tri-diagonal, as will be shown in section 6, and can be solved
by a simple recursive algorithm. In section 6 this well-known algorithm will
be described briefly. It is verified that the structures of the implicit

equations are such that rounding errors remain bounded.

4.1 On nonlinear extensions of linear finite difference methods

First we will discuss some aspects of nonlinear extensions of linear FDMs by

means of the inviscid Burgers' equation:

B
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u, o (d uz)x =00 &hxicll,it=> 0 (4.1-1)

This equation is "conservative". This means that, for homogeneous boundary

conditions at x=0 and x=1, the following relation holds:

d . (4.1-2)
4 Jlull- o
where
1
ull2 =) u? ax
o
Consider a semi-discrete numerical approximation of (4.1-1) given by:
gk - = 0, m=l, eses M~1 (4.1-3)
(um)t um(um+1 um_l)/ZAx y s s

This equation can be considered as a nonlinear extension of the following

linear finite difference scheme:

_ = (bol-4
(W), +U (u  -u )/2x=0 )

where U is a constant.
Equation (4.1-4) is the so-called "frozen coefficient!" equation associated

with (4.1-3), which is obtained by assuming that the coefficient up of ' (4.1-3)

is a constant, uy = U.
The FDM (4.1-3) is by no means the only possible nonlinear extension of (4.1-

4). Consider for example the following semi-discrete FDM:

1 - = 4-‘
(uy)y + 3 (ugy +u um+1) (u 1 Um_l)/ZAx 0 (4.1-5)

1 =
If we "freeze" the coefficient 7 (u _; +uy *+ u; ) then we also obtain (4.1

4). This means that the linear properties of (4.1-3) and (4.1-5) are the same.
are different. The FDM (4.1-5) is conserva-
This means that for (4.1-5) the fol-

The nonlinear properties, however,
tive, cf. Kreiss and Oliger [l4] p. 62.

lowing relation holds for homogeneous boundary conditions:

L. 2 (4.1-6)
at llull g = 0
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M-l
where ||ull, = { (z) u “}* ax

To obtain a numerical solution, also a discretization in time will have to be

defined. For (4.1-3) we consider the following time-discretization:

k+ k k+
u

= uk)/t + dutu

(u ey }uk+l o . 0, at m (4.1-7)
ox

where uyy is defined as for (3.2-2).

This FDM is 1locally linear and consequently the solution can be obtained

without the application of an iterative method to solve nonlinear equations.

For (4.1-5) we consider the following conservative discretization in time:

k+1 k+1,2 k+1
o

W g (1 T W W ) = 0, at m

(4.1-8)

Both (4.1-7) and (4.1-&) are nonlinear extensions of the same "frozen coeffi-
cient" equation given by:
k+1

@y + 4 v,

x +1U (), =0 (4.1-9)

X
The stability of (4.1-9) is sufficient for the convergence of (4.1=7) and
(4.1-8) if the solution of (4.1-1) is sufficiently smooth, cf. Richtmyer and
Morton [20], p. 127. In general, however, the stability of the frozen coeffi-

cient equation is only a necessary ondition, see Oliger and Sundstrém [19].

The stability of (4.1-8) can be proven by the energy method. This means that -

for homogeneous boundary conditions, cf. Richtmyer and Morton [20] p. 142 or

Kreiss and Oliger [14] p. 62, the following relation can be proven:

k o
o il ax =lle llax ¥ k (4.1-10)

where IlukIle =[z (ug)zjé Ax and u® is the initial value of u.
m

Because of (4.1-10), (4.1-8) seems a safer approximation of (4.1-1) than (4.1~

7). The solution of (4.1-8) requires an iterative algorithm, while (4.1-7) can

be solved directly. Moreover, the solution of (4.1-8) is not necessarily a more
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accurate approximation of (4.1-1) than the solution of (4.1-7) despite the
conservationvproperty (4.1-6). To illustrate this point we consider the ini-
tial boundary value problem given by (4.1-1) with initial and boundary condi-
tion given by:

u (x,0) = x, u(0,t) =0, t > 0 (4.1-11)

For this case only one boundary condition at inflow is allowed.

The exact solution is given by:
u(x,t) = x/(1+t) (4.1-12)

For the numerical approximation of (4.1-1) and (4.1-11) we define a grid with
grid points (kt,mAx), k=0,...K, m=0,..., MAx = 1/M.

We consider the numerical approximations (4.1-7) and (4.1-8). For both schemes

the initial and boundary conditions are given by:

K
U = mAX, mo= 1, e, M, uy =0, k=0, cee, k (4.1-13)

In order to apply (4.1-7) and (4.1-8) at m=M we define a virtual grid function
value by:

i =2y =l e B
The order of accuracy of both (4.1-7) and (4.1-8) is determined by substitu-

tion into these equations of:
u(mix, kt) = mAx/(1l+kt) (4.1-15)

From this substitution it follows that (4.1-7) represents the exact solution
of (4.1-1) and (4.1-11) without any error, while (4.1-8) is a second order
accurate approximation of (4.1-1) and (4.1-11) clearly illustrating that
conservative FDMs do not always yield more accurate approximations than non-

conservative FDMs, especially if the boundary and initial value conditions are

such that the conservation property does not hold.
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A practical disadvantage of (4.1-8), despite its conservation property, is
that there is no guarantee that the nonlinear equations have real solutions.
We will illustrate this point with a simple example. Suppose that for (4.1-13)
M is chosen as: M=l. Then by substitution of (4.1-14) into (4.1-8) we obtain,
for k=1, the following equation:

1.2 250 2 48
(ul) + <30 1 - i 0 (4.1-16)
This simple quadratic equation has real solutions only if the following rela-

tion:
T < 1% /2 (4.1-17)

is satisfied. This means that for t > 1 + ¥2 any iterative procedure to solve
(4.1-16) that does not account for imaginary solutions does not converge.
It is obvious that (4.1-7) always yields real solutions for any value of 1 for

this simple example.

Which method is most satisfactory for '"real 1life'" applications remains a

question that can be answered only by practical experience.

4,2 The finite difference method at the inner points

For the linear FDMs described in chapter 3 the criteria formulated in the
introduction of this chapter are satisfied as much as possible by (3.3-4)
because of: (i) complete grid staggering for optimal efficiency and mini-
mization of wiggles, (ii) unconditionally linear stabilities for robustness,
(iii) second order accuracy, (iv) dissipativity to increase robustness; this
dissipativity, however, is small and does not decrease the accuracy.
Therefore, in this section we propose a nonlinear extension of (3.3-4) for the
approximation of (4.0-1).

We will only deal with the numerical treatment of the inner points. The treat-
ment near or at the boundary is described in the following sections.

The method of this section has the following general structure:
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Stage 1 (S1):

W01 _ k)

i (E[p]’.![p-ll’ EF) =F, p=1,2 «es, P, (4.2-1a)

k+4 [P]
w =w

Stage 2 (S2):

SL01, K+

(Ejpl [p-l]’ E}+&) - 5, gob by Vg sewy B (4.2-1b)

L,

y N

k+1 [P]
X ey

where w denotes a vector of grid functions, LI,Z finite difference operators

and Fl,2 vector functions.

We will describe each term of our FDM separately and we will elucidate each
approximation. For convenience we repeat (4.0-1), omitting the nonhomogeneous

part:

2. 23k pnlon. - .
u + uu + vu - fv + g + gu (u+ v )/ (CTH)=v(u + “yy) 0, (4.2-2a)

2
25 ety -viv # v.,) = 0 (4.2-2b)
Vet vt uv + fu + glo+ gy (u xx' Vyy >
- 0, (4.2-2¢c)
G, + (Hu) + (Hv)y 0

The staggered grid that is used is defined by figure (4-1) or figure (3-4).



o O -

n+1 (4 u c

n+ % v h v

n c u c
m m+ m+1

Figure (4-1) Staggered spatial grid

If we do not take into account the iterative or predictor corrector procedures
that will be introduced later, then, at the inner points of the grid, each
term of (4.2-2) is approximated as follows:

a): Uy at m+}, n:

Si: (uk+%— uk)/} T at m+ 4, n
(4.2-3a)
+ +
$2: (uk Y uk })/} T atm+ %, n
b): wvg; as ug, but at m, n+b (4.2-3b)
e): g.; a8 U, but at m, n (4.2-3c)
d): uug; at m+}, n:
.kt k k
Sl: “m+§,n(“ i um_*’n)/zAx (explicit)
(4.2-3d)
k+4 k+1 k+1
S2: “m+i,n(um+li,n_ um—%,n)/ZAx (implicit)

This discretization has been the subject of numerous numerical experiments

carried out by the author. Also such discretizations as:

k

v k k
"3 um+§,n(um+1i,n— um-%,n)/2Ax

(explicit)
(4.2-34")

k+1 k+1 k+1
S2: “m+},n(“m+li,n- um_i’n)/ZAx (implicit)
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were tested. For fairly large Courant numbers (4.2-3d) especially turned out
to have better stability properties than (4.2-3d'). Also more conservative
approximations have been tested, see section 4.1, but these nonlinear approx-
imations were not less susceptible to instability than (4.2-3d). Moreover, for
steady flow problems the conservative approximations introduce an increased

amount of numerical dissipation as was found by practical experiments.

e): vy, at m, n+d:

Ak k+t <+ T
Si¢ vm,n+%(vm,n+1§— Vq,n-})’335 (implicit)
(4,.2-3e)
k+1 k+i k+4 i
S2: vm,n+§(vm,n+1§’ Vm,n—i)/ZAY (explicit)
This approximation is similar to (4.2-3d).
f): Vuy, at mt,n:
L=k k k k k
8k "m+},n(“m+4},n+2+““m+},n+l“‘“m+},n—1'“m+%,n-2)/12’3y
~ (explicit)
=k+} k+1 k+1 k1 =k+}
= if >0
Vrrd .0, 0 0, 01 Pomd, 020/ 2875 A8 Vg
32:< (implicit) (4.2-3fF)
=k+} (=3uKF] g Kt L Jekl y/28y, if ;k+% <0
Ymtd,nt T Vmkd 0T Y d, okl mbh, 02 ! mH,n
&
=k+4 k+4 k+4 k+} k+4
h =
el Vbl n (Vm,n+}+ vm+1,n+§+ vm,n-«}+ Vm+1,n'%)/4

At stage 2 (4.2-3f) is implicit and is approximately solved with 2 iterations,

cf. section 2.3.

g): UV 8L m,ntds

=y, Kt k+d k+} =k
un,n+§(3vm,n+%-4vm-l,n+§+vm-2,ﬂ+f)/2Ax’ i Ym, n+} 28
Sl (implicit)

5 K+ k+} k+h =k P
“m,m*—}('3"m.n+}+""m+l,n+}"’m+2.n+§)/2“’ 1f Up pey <O 4+2238)
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k+4
m+1,n+d

k+4 k+§

=k+1 et}
m-1,n+}" V-2, n+}

822 v ot Vit 2, bt e

)/ 12A%
(explicit)

+h4v

=k k k k

k
where T (um+;’n+um+%,n+1+um-¥’n+um—{,n+1)/4

This approximation is similar to (4.2-3f) but this time the first stage is

implicit.
h): -fv at mti,n:
=k+}
8 -fvm+%,n (implicit)

S2: as S1, which is explicit at this stage

i): fu at myn+i:

=k

81 £ U, nebd (explicit)
s2: f Gﬁt;+% (implicit)
D: gu (ulwD) ik, at wHn
S1: 8 iy, ol Gl 00+t 00 1/ Ced, o )
el s et

8$2: g Uned, n[(“m+i n) +(Vm+* n) ] /(Cm+§ - m+§ n)

k k
i Hm+%,n- %(Cm+1,n+gm,n+hm+},n+i+hm+i,n-§)
This approximation is implicit at both stages.

2.4

k): gv (u2+v Y*/[c(g+h)] at myn+i:

- k+}
Sz g vm n+}[(vm n+&) + (um n+*) ]i/(cm n+%Hm n+&)

824 k+1 k+}

© 8 vm,n+§[(v i

B A |
+f) +( m n+§) ] /(Cm n+}Hm n+§

k k k
where Hm,n+i- %(Cm’n+1+Cm,n+hm+§,n+i+hm-§,n+§)

(4.2-3h)

(4.2-31)

(4.2-33)

(4.2-3k)
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This approximation is similar to (4.2-3j)

1): -y (u +u ) at m+i,n:
XX yy

$2: -v[(u:rti,n)oxx+(u::;’n)oyy] (implicit)
where:
(u* (u* gk ok i oypan

um+%,n)oxx= Ymk1d,n Umbd,n m},n

k

k k n 2
(um+4[,n)oyy= (“m+§,n+1'2“m+§,n+“m+&,n-1) Yo

k+1 k+1

re defined accordingly.
(um+§,n)oxx and (“m+%,n)oyy are

The second stage is implicit. The implicit part in the y direction is solved
iteratively, similarly to vuy. For fairly small values of v two iterations are

enough. If not, it is probably preferable to change this part of the discre-
tization method, which is very possible.

m): -v (v _+v ) at m,n+}:
XX yy

k+4 k+3:

Sl: —V[(vm,n+§)oxx+ (vm,n-l—})oyy] (implicit)

(4.2-3m)

S82: as S1, which is explicit at this stage

where:

k+% k+4
m,n+i m—-1,n+

k+3 k+}

m,n+4})oxx= (vm+1,n+%_zv

(v %)/Ax2

k+} k+} k+} k+} 2
(vm,n+i)oyy= (Vm,n+1§_2vm,n+%+vmpn'§)/Ay

The implicit part in the x-direction is solved iteratively, similar to uv,,

n): gcx at mti,n:
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k+ k+
8 (l;mﬁ ey i)/Ax (implicit)
(4.2-3n)
S2: as stage 1, which is explicit at this stage
0): gCy at m,n+}:
S1: . vl v (explicit)
<8 (Cm’n+1 Cm’n) Ay explic
(4.2-30)
k+1
82t gy nt1 t;m n)/Ay (implicit)
p): (Hu)y at m,ni
S SR k+:  k+d
81 (Hm-l'i,num-"{‘,n_ m—é,num—i,n)/Ax (implicit)
(4.2-3p)

S2: as stage 1, which is explicit at this stage

The implicit part tere requires an iterative procedure. Locally linear
schemes, which are cheaper, were tested as well; but it was found experimen-
tally that this local linearization causes instabilities, especially at very
shallow regions with an accidented bottom profile.

For example, the follgwing '"local linearization" turned out to be unstable:

& kﬂ) 7 *a k+«} Tk_RHEX

81 Cox , at myn (effectively implicit)

= + k+ + Ix
82: (hy uk §)°x+ & 1 u::% + uk ICEI at my,n (effectively explicit)

where it is to be noted that:

= (ho- ¥
(Hu)ox (h u)ox + U u Cox at m,n
For the iterative solution of (4.2-3p) several possibilities were tested. The
procedure that turned out to be very efficient is given by (4.2-4).

Usually, two iterations are enough, both for accuracy and stability. Only for
very ‘shallow regions with an accidented bottom'ptofile and points changing

from dry to wet and vice versa, see section 4.5, more iterations are occasion-
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ally necessary for stability. Second order accuracy is obtained for Q > 2, for

Q see 4.2-4,

q): (Hv)y at m,n:

. k k k
SLE (0o Ytk Teoned Y0 -3)/8y (explicit) G
+2-3q

k¥l k1l k4l kel
implicit
52: (Hp, nty Vi, n+3 M, n-4Vm ,a~3)/8Y (implicit)

The iterative procedure to solve the implicit part is given by (4.2-4).
If all the iterative procedures to solve implicit equations are taken into

account then the discretizations (4.2-3a) up to and including (4.2-3q) yield
the following FDM for the approximation of (4.2-2):

Stage 1:
AL o, B v, C[o]’ g

For p=1,2, q = 1,2, ++s,0Q¢
LSRR L e S R B o S
sl 32, (K R s >-v(“oxx ‘;yy) 0, at wH,n (4.2-4a)
Pt w® ;}fﬁ 5, (a5 vIPlacore)) + rateal
+ Pl (2P r i [P]) = 0, at m,n+} (4.2-4b)

[q-1]u£:]+u[q-115£:] +(H)

°y=0, at m,n
(4.2-4c)

cllckypre@alhy s

JeH Q] ke (2] ke 0]

where:
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=k+4
Soy(v

Kk P S Kk k
,u )at m+§,n-vm+%’n(um+%,n+2+4u

—~

=k [p-6]1 , [p-61] [p-61]

[

S+x[:k,v P],B]at m,n+&={

=k [p-1461 , [p-1+8] [p-1+8]

ke
8- (pro") = 11 + (-DP'? )

k
m+i ’ n+l—4um+§ = n—l_um.'.% ,n=2 )/ 12Ay

=k
um,n+&(3vm,n+&—avm—1,n+%+vm—2,n+%)/2Ax if um,n+%>0

=k
um,n+§(_3vm,n+% +4vm+l,n+§—vm+2,n+f)/2Ax if um,n+}<O

e L uk > 0 (2 u denotes the sum of u over all grid points)

, m,n m,n
p =
R L R uk <0
m,n
and vgziat m,n+ = (Vii{f:i;p+p')]-2v£?i+}+vifz?§zzp')])/sz
Stage 2:
JlolL et lol_ JleHt ol ket
For p=1,2 and q = 1, «ss, Q¢
e L T L LT B g
+gu[p][(;k+é)2+(uk+%)2]&/(C2Hk+§)-v(u£:i+u£;i)-0 at mti,n
(v[q]—vk+})/}1+v[q]vzz +S°x(;k+1,vk+i)+f:k+l+g;£1]

+evl U oy 2 gl 2 o2ty (Rt kb g L o

OXX' ' oyy

xl =1
el ottty @t lat el fe T

(4.2-4d)

(4.2-4e)

=0, at m,n

(4.2-4fF)
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=339 =
k1, 121 ekl [Q] kbl Q]

where:

(= -51_, [p-61  [p=5]
vmtg!n(au‘gii)n-[‘umz%:n-lhnrzf,n—z)/zAxs
=k+4
1E vm+%,n>0

S k4 u[P]

+y(‘=' ’ )é)at M)n.J

=k+} (_3u[p-1+6]+4 [p-1+8] _ [p-1+6])/2Ax’

Vit n m+i,n Umkd , nt1 Y mkd, 02
if ;:Ii’n<o
5(pp") = [1 + (-1)P'P)

(5 JOOE 2P vk+%> 0 (¢ v denotes the sum of v over all grid points)

p' = m,n m,n
I, A€ 2 vk++ <0
m,n
=k+1 k+ =k+1 k+i td - kbt _ k+}
Sox(u sV i) at m,n+ = “m,n+§(vm+2,n+}+4vm+l,n+f 6vm—1,n+} vm—2,n+§)/IZAX
* -148 0 BT [p=6(p+p")] 2
and ugygat mH,n = (uézi’:+§p+p _Zum+i,n+um+%,n—1 )/ Ay

At stage 1 (4.2-4b) is an implicit equation. Because of the definition of

P', (4.2-4b) is solved column by column in the dominant flow direction of u. If
the sign of u is constant then (4.2-4b) is solved in one iteration, otherwise
a second step is necessary. This step proceeds in the opposite direction.
After (4.2-4b), (4.2-4a) and (4.2-4c) are solved. These equations are coupled
implicitly. By substitution of (4.2-4a) at m-%,n and at mt},n into (4.2-4c) at
m,n the implicit equations are tri-diagonal and of the same size as the tri-

diagonal equations of (4.2-4b).

At stage 2 (4.2-4d) is implicit and is solved similarly to (4.2-4b). The
coupled implicit equations (4.2-4e) and (4.2-4f) are solved according to (4.2-

4a) and (4.2-4c).
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By solving (4.2-4) in the sequence (4.2-4b), [(4.2-4a) and (4.2-4c)], (4.2-4d)
and [(4.2-4e) and (4.2-4f)] the computer implementation needs only one array
per dependent variable (u,v,() and one work array of the size of the number
of "¢-points" of the grid. This means that the FDM is very efficient with

respect to storage.

4.3 Boundary conditions, closed boundaries

The SWE given by (4.0-1) are of course incomplete without boundary conditions.
In general two types of boundary conditions are to be distinguished: closed
and open. Closed boundaries are land-water boundaries; they are physical
because they relate to a really existing boundary. Open boundaries are mathe-
matical; they are introduced to restrict the size of the domain of the prob-

lem. This section describes the numerical treatment of closed boundaries.

At a closed boundary, one boundary condition is to be prescribed if v=0; then
the equations are hyperbolic. If v#0, two boundary conditions are to be pres-
cribed. In that case- the equations are "incompletely parabolic", see Oliger
and Sundstrdm [19].

At closed boundaries the following boundary conditions are given:
Uy =0, (4.3-1a)
8
(1=a) U//+(l“6—nU//’ 0 (4.3-1b)

where uy denotes the velocity normal to the boundary, uy/ denotes the velocity
parallel to the boundary and %; denotes the derivative normal to the boundary.
If a=1 then (4.3-1b) describes a '"perfect slip" boundary condition but
if a=0 then (4.3-1b) represents a '"no slip" boundary condition. In gener-

al a=1.

For the FDM (4.2-4) closed boundaries are represented by zero velocities in
either the x-direction or the y direction. For some geometries this yields
the typical "zig-zag" lines of which an example is figure (4-2).
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i . . Figure (4-2) Example of closed bound-

aries as represented by the staggered

grid.

The staggered grid allows a simple treatment of the boundary conditions. At a
closed boundary only one dependent variable is to be calculated. Because this

variable equals zero, no special boundary scheme is needed at the boundary

itself. Near closed boundaries, however, the discretizations of section 4.2

cannot always be applied. This problem concerns only the discretizations of

the momentum equations. For the discretization of the continuity equation

Special boundary schemes are not necessary.
We will describe the boundary schemes for the momentum equation in the x-

direction. The boundary treatment of the momentum equation in the y-direction

is similar.

We will give a separate description of the discretization of the momentum

equation for each term, that needs a special boundary treatment. It is to be

noted that uy and gf, never need special discretization. This is an important
x

advantage because these are in general the most important terms of the momen-
tum equation. In fact the special boundary discretizations are only necessary

for the advection terms, which only have limited influence in case of some

applications, see, e.g., Verboom [26] or Stelling [21].

The boundary treatment, near closed boundaries, for the advection terms is as

follows:
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a) uuy

For the inner points the discretization of this term is given by (4.2-3d)
which is second order accurate in both space and time. If we look at the point
depicted in figure (4-3) then it seems that

+ <)
e p01nt under consideration
closed boundary

Figure (4-3)

for uuy, a special boundary discretization is not necessary. Theoretically this
is true. But for practical applications when (4.2-3d) is applied near bound-
aries, it can produce instability or artificial boundary layers. Consider for
example the situation of figure (4-4).

point under consideration (m+%,n)

J

+®+

flow directions

7

Figure (4-4)

Application of (4.2-3d) for the discretization of the advection term at the

point under consideration yields:

(uu_) ( -0)/2Ax (4.3-3)

wri,n - Umeh,n Ymbld,n

In practical applications the velocity in the point under consideration can be

e

i
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quite large. In case of flow direction A i.e., u > 0, (4.3-3) act as an arti-
ficial bottom friction term, yielding a large local water level gradient and
an artificial boundary layer. In case of flow direction B, (4.3-3) might act
as a destabilizing term as has been confirmed by numerical experiments.

To avoid both too large dissipative discretizations near the boundary or
unstable discretizations we adopt the following procedure for the situation of

figure (4-4):

(4.3-4)
-u Jax, if u <0

um,n (um+l,n m,n) £ m,n
This approximation is first order consistent, which does not affect second
order convergence because this approximation is applied only near the bound-
ary, see chapter I.
The discretization (4.3-4) turned out to give satisfactory results for a large
variety of geometries. By practical experience we found that in general satis-

factory discretizations for advection terms near boundaries are generated by

taking into account the following principles:

i) Always avoid negative diffusion in the truncation error of the dis-

cretization.

1i)  If the discretization formula contains the boundary value u; = 0 then
try to avoid this by using a discretization that needs fewer grid
points, or by upwind differencing. If it is not possible to avoid the

boundary value y = 0 in the discretization formula, then the advection

term has to be approximated by a zero value.
iii) The discretization should be such that if the boundary procedure is

applied to a frozen coefficient Cauchy problem, then the resulting
scheme is stable, cf. Goldberg and Tadmor [7], [8] or Trapp and Ramshaw

[23].

By (i) and (iii) instabilities are avoided while (ii) suppresses artificial

boundary layers.

Summarizing, for the discretization of uug, we adopt the following procedure

for the situation of the figures (4-4) and (4-5):
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+
;} g%? Stage 1 (ui_*’nao, uz+l%’n¢0):

point under k

consideration % " Ym+d,n e
(m+4,n) w =
k k+4 k+4 k
“m+},n(um+l§,n-um+i,n)/Ax’ e “m+i,n AN
Figure (4-4), Up-},n = 0
(4.3-5a)
k+} k+4 .
Stage 2 (um_*’n-O, “m+1§,n*0)'
k+4
0 > 4 4 unﬂ-},n> 0
w_ = (4.3-5b)
k+1 k+% k+4 k+4
Uotd,n (Upp1f 0 U, o)/8x 0 If Unti,n¢ O
o+ f
1\ =~
|
point under
consideration
(m+%,n)
Figure (4-5) um+1%,n- 0
k k
Stage 1 (“m-},n* 0, Une1},n” 0):
k k+} k+4 k
um_‘_%’n(um_hn-um_*,n)/Ax, if um_ﬂ’n> 0
Uy = (4.3-6a)
x k
0 i ' um+%,n< 0
k- k+
Stage 2 (“mii,n¢ 0, um+i},n'o):
k+1 k+4 k+} k
um+},n(“m+§,n— um-i,n)/Ax' if “m+§,n> 0
uu = (4.3-6b)
X k
o s 1 um+§‘n< 0

Note that if o e 0 and upyl n = O then Uy e 0.

The discretizations of vvy near boundaries are similar to those of uuy .
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b) vuy:

For the discretization of vug we take into account the same principles that
were used for uuye Also for this case first order consistency is assumed as
sufficient to maintain second order convergence. For vuy the boundary proce-
dure is more complex, which stems from the fact that the "full" discretization
at the inner points as given by (4.2-3fa) and (4.2-3fb) involves more grid
points, as is illustrated by figure (4-6).

(O point under consideration (m+},n)

| | | [Jgrid points involved in (4.2-3fa)

ES
I

-+ B+ -+ -
s [ o

-+ O+ -+ -
o [ !

-+ B8+ - + -
| I I
-+ B+ -3 =
(O point under consideration (m+4,n)
s ety s {>grid points involved in (4.2-3fb)
| | I =k:
R T S for each sign of vm—ti,n
N 1
< @ &> grid points involved in (4.2-3fb) if
+ (O + + - st o
@ @ | Vm+},n
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Figure (4-6) Grid points involved in (4.2-3f)

Because of the large number of grid points involved in (4.2-3f) there are many
possibilities that might cause a considerable amount of computational over-

head. To reduce the overhead we consider only the situations of figure (4-7).
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Figure (4-7) Possible situations for the discretization of vuy

The situations of figure (4-7) can be determined very easily by representing

the situation in each computational cell as a position in a binary number of
four bits.

At stage 1 we consider only the following discretizations:

=k+} k k k k
ke m+i,n(um+},n+2+4um+},n+l_4um+§,n-l_um+§,n—2)/12Ay (4.3-Ta)
W ok K
Wy vm+§,n(um+i,n+1—um+§,n—1)/2Ay (4.3-7b)
vau = 0 4,3-7¢
v ( )

Discretization (4.3-7a) is applied only for situation a, (4.3-7b) is applied

for situation b, 1, and j; and vuy = 0 for the remaining situations.
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=k+} =k+}
At "
stage 2 we consider two cases: , (I) vm+},n> 0 and (II) vm+*,n< 0. We

consider only case (I) because (II) is treated completely similarly. For case

(I) we consider only the following discretizations:

=k+} K+l _, kel k+1 i
vu = vm+},n(3“m+§,n 4“m+§,n—l+um+&,n—2)/2Ay (4.3-8a)
=k} kel kel 3
vug = vm+i,n(“k+§,n-“k+i,n—l)/Ay (4.3-8b)
va_ = 0 (4.3-8c)
y

Discretization (4.3-8a) is applied for the situations a, e, i and m. Discreti-
zation (4.3-8b) is applied for b, £, j and n while vuy = 0 for the remaining

situations.

The boundary procedure as described above causes little computational over-
head, and any possibly geometry can be treated by this procedure. The order of
consistency is at least one. The stability of the procedures when applied to a

Cauchy problem can easily be verified; the stability for practical problems

was confirmed by numerical experiments.
The final term that we treat in this section needs a special discretization

near closed boundaries and is given by uyye (Note that uyy, does not need a
special discretization.) For the boundary procedure of uyy we consider the

situations of figure (4-8).
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Figure (4-8) Possible situations for the discretization of uyy.

The following discretizations are applied:

2
for a: o o (“m+§,n+1_2“m+},n+um+§,n~l)/Ay (4.3-9a)

2
for b: Uy [(11)(-3UM,nNM’Ml)+u(-um+§’n+um+%’nﬂ)]/Ay (4.3-9b)
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Z
for .c: uyy = [(l_a)(_3“m+},n+“m+§,n—l)+u<-um+},n+um+§,n—l)]/Ay (4.3-9c)

2
for ds uyy= -(1-a) 4um+%,n/Ay (4.3-94d)

The time discretization is similar to (4.2-32).
It is easily verified that for a=1, the usual case (4.3-9) is completely
second order accurate. If a#l1 then (4.3-9a) is second order accurate and the

remaining discretizations are first order consistent.

4.4 Boundary conditions, open boundaries

As already mentioned open boundaries are artificial water-water boundaries
that have been arbitrarily drawn somewhere across a wider flow field to re-
strict the domain of the problem. Computational fluid dynamicists, as well as
numerical analysts are quite active in the subject of open boundary approxi-
mation, see e.g. Kreiss [13], Kreiss and Gustafsson [15], Oliger and Sundstrdm
[19], Verboom et al [25], [26] Gerritsen [5], Gottlieb et al [9], Enquist and
Majda [4], Kutler [16], Strikwerda [22], Elvius and Sundstrom [3], Gustafsson
[10]; this list is nowhere near complete. A thorough theoretical treatment is

beyond the scope of this work.

This section describes the numerical boundary condition procedures for the

following boundary conditions at open boundaries.

a) Velocity boundary conditions given by:

u = £(t) (4.4-1a)
U// =0 (4-[6—1‘))
2 =0, f v # 0 (4. 4=16)

b) Water level boundary conditions given by:

& = £7(t) (4 :d~2a)
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u,, =0 (4.4=2b)

o)
Tl 4 g 0 =2Fvig O (4.4-2¢)
where (4.4-1b) and (4.4-2b) are prescribed only at inflow, i.e., if u, is
directed from outside the domain of the problem to inside. The well-posedness

of (4.4-1) and (4.4-2) is treated by Verboom et al [24], [25].

The conditions (4.4-1) and (4.4-2) are often applied to practical flow prob-
lems in civil engineering because the prescribed quantities can be measured in
nature. However, "absorbing boundary conditions", see Enquist and Majda [4],

can also be implemented by the procedures that we describe in this section.

Because of the staggered grid, the special boundary procedures are necessary
only because of the advection terms. Various extrapolation procedures were
tested as proposed for example by Elvius and Sundstrdm [3] or Gerritsen [5].
When applied to our grid structure these procedures were not satisfactory for
inflow boundaries. At inflow, extrapolation procedures are sensitive to insta-
bilities as was found by practical experience. It seems that boundary extra-
polation methods are stable only if they are based upon extrapolation of
quantities that reach the boundary from inside, like the outgoing "Riemann
invariants", see Moretti [18] or Gottlieb et al [9]. For relevant applications
in civil engineering it was also found by practical experience that the order
of consistency of the advection discretization near the open boundary is
hardly important. This means that the solution at the inner points is not
greatly influenced by the order of the advection discretization near the open
boundary. This observation was also made by Leendertse (private communica-
tion). It is important that the boundary procedure be stable. We found that
the heuristic principles of the preceding section are also applicable for the
construction of open boundary procedures. For the discretization of (4.4-1)

and (4.4-2) we propose the following procedures:
a): Velocity boundary conditions:

for velocity boundary conditions we assume a geometry as given by figure (4-9)
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Figure (4-9) Open velocity boundary

The following discretizations are used:

k
u = £ (kt), at MHi,n (4.4=3a)
vk = 0, at M+l, n+} and M+1, n-% (4.4-3b)
k k
CMt1,n~ SM,n (4.4-3¢)
uu_ 18 ui> 0
at M-},n uu, is approximated by (4.4-3d)
x
uu if 'u <0
+x

where u-x and ujy are defined according to (3.3-2).

This procedure is consistent with (4.4-1). The condition given by (4.4-3a) is
consistent with (4.4-la). Because of the procedures for the discretizations of
vuy, and Vyy near closed boundary as described in section 4.3, (4.4-3b) is
consistent with (4.4-1b) and (4.4-1lc). Because of (4.4-3c) at point M,n of
figure (4-9), the continuity equation, is approximated with zero order consis-
tency. According to Gustafsson [10] or Beam et al. [2], this is sufficient to
maintain convergence. Experiments with extrapolations of a higher order did
not greatly change the results at the inner points or became unstable. Bound-

ary conditions in x and y direction are treated similarly.
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b): Water level boundary conditions

For water level boundary conditions we assume a geometry as given by figure

(4-10).

+ -

: "solid walls" of length Ax
ST ,

1

e 0 boundary point (M,n)

opgn boundary

Figure (4-10) Open water level boundary
The following discretizations are proposed:

Ck = fc(kt), at M,n (4.4~4a)

k
L0 ,» at M,n+} and M,n-% (4.4=4b)
uu 1€ 'u >0
-x

at M-},n uu, is approximated by (4.b4=4c)
0 o AR

uu 48 w >0
-x

at M-1%,n uu  is approximated by (4.4-44)

uu, if u< 0

This discretization is a consistent approximation of (4.4-2).

Note that at inflow uu, is approximated by a zero value at M-},n. This yields
2 zero order consistent approximation of the momentum equation at M-i,n. Again
this yields only first order convergence from a theoretical point of view. Yet
the influence on the inner points of this approximation is negligible as was

found by practical experiments. The only noticeable effect of approximations
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of a higher order of consistency 1s that sometimes they became unstable.
Consider for example the following extrapolation formula for a "virtual" u

value at M+4,n:

k

k K &
UM+d,n" ZUM—é,n_uM—li,n thiah

where the boundary procedures as proposed by Elvius and Sundstrdm are based

upon similar extrapolation formulae.

If (4.4~5) is substituted into (4.2-3d) then we obtain:

uu = uu_, at M-4,n (4.4-6)
If we calculate the truncation error of the spatial discretization of (4.4-6)

then we obtain:

u(x,5, ) [ulx,y, 01 _=uCx,y, ) [ulx,y, )] = $20x,y,t) lulx,y, )], +0(ax’)
(4.4=7)

If u < 0, then the truncation error of (4.4-6) contains negative diffusion as

follows from (4.4-7). This is probably the reason for the observed instabili-

ties.

A stabilizing effect is often experienced as a result of the prescription of
Riemann invariants at the open boundaries, see e.g. Oliger and Sundstrdm [19].

In this case we obtain the following boundary conditions:

uw + 2em? = Ry, (4.4-8a)
“// =0, (4.4-8b)
o)

2w, =0, (4.4-8c)

As mentioned before, Riemann invariants are quantities that are not measured
in nature. In order to profit from the stdbilizing effect of Riemann invari-
ants while velocities are still prescribed as boundary conditions, we propose

the following boundary conditions:
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u +e %;'[u_t 2 (gH)&] = fu(t) s (4.4-9a)
u//= 0, (4.4-9b)
o)

3a Bpp= 0 (4.4-9¢)

For sufficiently small values of ¢ (4.4-9a) is an accurate approximation of
(4.4-1a). Yet with respect to very short wave lengths, which are produced for
example by nonlinear effects inside the domain of the initial boundary value
problem, (4.4-9a) acts as non-reflective boundary condition.

Numerical experiments carried out by the author confirmed this conjecture.

4.5 Tidal flats

In this section we describe the treatment of land-water boundaries for which
the location is a function of the water level. The location of these bound-

aries is implicitly given by the following relation:

Z+h=0 (4.5-1)
If ¢ (x,y,t) varies as a function of time then the location of tidal flat
boundaries varies as well, depending on the shape of the bottom profile, see

e.g. figure (4-11).

location of land — water boundary
/111111 water

Figure (4-11) 1D Bottom profile with varying land-water boundary

For the fixed l-dimensional grid of figure (4-12) a continuously varying
Position of the boundary is not possible. As discretization for the situation

of figure (4-11) the bottom profile of figure (4-12) is assumed.
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Figure (4-12) Discretized 1-D bottom profile

For the bottom profile of figure (4-12) the boundary conditions are given by:

um+§-0, if hm+§+* (Cm+cm+1) < 60 (4.5-2)

where hpyy denotes the bottom depth below some plane of reference.

For the two-dimensional grid of figure (4-13) the boundary conditions are

given by:
um+§’n- L & Hm+§,n < 60 (4.5-3a)
vm,n+§- Q) 4£ Hm,n+§ < 60 (4.5-3b)

These equations intrinsically assume a bottom profile as given by figure (4-
13).
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plane of reference

Figure (4-13) Discretized 2-D bottom profile

In very shallow regions there are several sources that might destabilize a

FDM. Examples of destabilizing sources are given by:

(1) Singularities due to the intersection of characteristics. See Abbott [1]
for a discussion on characteristics and Liggett [17] for a discussion on
flow stability, roll waves, critical flow, etc.

(i1) Singularity of the bottom friction term if H»0. It is questionable if
the numerical representation of the bottom friction term remains stable
in this limiting case.

(iii) The numerical flooding and drying procedure induces disturbances by
suddenly changing the status of a velocity point from flowing, i.e.

u,v # 0, to dry, i.e., u,v=0 and vice versa.

In general the flow distribution of the shallow regions is not very important
for the flow distribution of the deep regions. Considered as a storage basin,
however, the shallow regions may be important. Therefore 60 should be chosen
as small as possible. Very small values of H facilitate the onset of instabil-

ities, however. Moreover it is questionable whether at very shallow regions
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the water movement is described accurately by SWE, especially if one takes
into account the bottom friction law that has been applied. In order to con-
trol the instabilities while maintaining the storage capacity of the shallow
region we propose the application of a strongly dissipative FDM for regions
characterized by the following relation:

oy e el e (4.5-4)
o 1

Between these thresholds a dissipative mixed ADI-LOD scheme is applied given
by:

Stage 1:
[0 & —E0f k- -fO]- —k

UTe e WYy e G S

For p=: 15 2, q = 1, seuy QF

w3y e -8 ﬂ+2gc["] [q][(CkH)ZﬂE“)Z]*/czal
v (Wt gyy) = 0, at mih, n (4.5-5a)
WPl 40 4 2 5, 105, v, scerenil + 2n+y(?7k,v) s
+ g Pl % s o He [p]) = 0 at mn+} (425-5b)
(C[q]-zk)/h & (;yu[q])ox_,_c[q 1] [q]_'_E ( [q 1] [q])_,_(Hkvk)ox_o o
(4.5-5¢)
Gl JkH_ 2] e )
where:
~k K K K g
Cm,n- (I-AY)Cm,n+ Y(cm,n+l+";m-\l-l,nﬂ;m-l n °m, n—l)
~k

~k ~k
u en v are defined similarly to
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—~

[q-1].[q] T
um-i,nc-x gt Y, n >0
-
K -
E+x(u = [q l] [ ) at m,n =
= X

g, (a5, Wikl ' PE bt defined di
[ s v, 8 (p+p')] and v, . are defined according to (4.2-4)

Stage 2:

W01, st 101kt 101 O] eor pu 2, qai, ..., o

(u[pl_;k+%)/%T_f;k+%+zs T Pl s (ptp Y1+20, @

P @ 2@ 2t e%s Pl a0, at mrn (4.5-5d)
Ly et +2gC[q]+g e e T L 5,
‘V(Vk+} k+*) =0, at m,n+} (4.5-5e)

oyy ~OXX

= k =
@l gty popquithierty pslaly alantlylthy | o Jlantl claly g

at m,n (4.5-5¢f)

kbl 2. ¢ okl V[Q].Ck+1’ C[Q]

u =u i
where uk+% ;k+§ and Zk+% are defined similarly to ck,

gkt a1 skt oy

~k+ ~k+4
uk }u+x, ifa-*"<0
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= o v
JLa-t] [q]’ 1g K >0
Vi, n-4 m,n
“3+y(vk+ s [q—ll ]) at m,n ={
Jlaot] lal k+37
Vin, n+d C+y’ i Vi, n 50
+y [=k+i, u[p]’ 8(p+p')] and “g;; are defined according to (4.2-4).

The equations (4.5-5c) and (4.5-5f) are conservative with respect to mass

because of the following relations:

(¢4 Uu>o0

u ) ’
m,n m-4,n"ox
o o + E_ (U,u,g) at m,n ={

© u ) U<o

m,n m+i,n"ox’

v e TN
m,n m,n~-}"oy
C - + E+y (V,v,C) at myn ={
s VRS0

m,n vm,n+-})oy

Numerical experiments showed the excellent stability properties of (4.5-5).
Note that for the large majority of practical applications (4.5-5) is not

necessary.

4.6 On the structure of the implicit equations

For a numerical method not only is stability an important aspect but also the
solution methods that are used should not be over-sensitive to rounding
errors, see e.g. Wilkinson [28].

The solution method we will use is a simple recursive algorithm to solve
equations with a tri-diagonal coefficient matrix. By this method a tri-diago-

nal system of equations given by:

az . + bmzm + e Bt " Zm, - S Dy 00y M (4.6-1)

where a = D, ey = 0

is reduced to a bi-diagonal system of equations given by:
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g X wi Vogdnt el s 2,4 anedi=l
m m m

mt1
(4.6-2)

w® Ty

where the coefficients Xp and Yy can be calculated by means of simple recur-

sion formulae given by:

X, = cllbl, ) ¢

1 = Zl/bl

1
(4.6-3)

X, = o b = a X vl 10 = (-amYm_1+Zm)/(bm-ame_l), m=2,.e0,M

The final solution of (4.6-1) is obtained by backward substitution of (4.6-3)

as follows:

(4.6-4)

z =Y X , mo= M-1, M=2, .o, 1

m memt1

This method is described by many authors, see Godunov and Ryabenki [6] or

Isaacson and Keller [11].

-

To prevent the amplification of rounding errors the following relation must

hold:

Kol< 1l m=1, cccy M (4.6-5)

A sufficient condition to fulfil (4.6-5) is given by:

[ 1> fa [+ e, [y m=1s2 oo M (4.6-6)

as can be easily verified.

We will study the structure of the equations given by (4.2-4a) and (4.2-4b).
It is only necessary to consider the coefficients of the implicit part, which

is of the following form:
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m—-4 cm A

-Cm-i Cm—l+ um—i+ o =

"Cm—§ cm_l-n;um_#(l + Cm—}' Cmﬂ) A% B; Bk ® CM Cari™ Ky (4.6-7)

ToCug R ST S T Ry

where:

Cp'= i%;’g/{1*%(u2+;2)*llcz(ﬂy+zx)] + Zﬁ;-(um+*— um'i)} at m,n

C =

u
m

m

gl

T o=t ™ 4
Bm AR (Cm + hm—i) and

malf P e
Bm 2A% (cm = hm-H[)'

Equation (4.6-7) is penta-diagonal,

but by direct substitution it can be
reduced to:

- +
-AC. + (14A #B ) T - B C ., =R +BR

et : (4.6-8)
where:
—y
=t el X 12 g(cm+hmii)
L um_++(2Ax) §ak & 5
g u ™)/ [C (Fy*?()]*zmx(“mf“m—%)
g (' F Ry
el 9 m+i
Bm A-ALX um‘_é'*(?};) »

R L G Yo S Pn R CHC RS

A sufficient condition to fulfil (4.6-6) is given by:

T -
= I“mﬂ ¢ 2 (4.6-9)
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where it has been assumed that O hz+% > 0.

In stead of verification of (4.6-6), (4.6-5) can be verified directly as well.
Suppose that (4.6-8) has been reduced up to the (m-1)th equation and is writ-

ten in the following form:

C + X C =Y (4.6-10)

From (4.6-8) and (4.6-10) it follows that:

4.6-1
T ( 1)

X = -B /(1+A +B +A X

m m m m mm
Suppose that the boundary condition at m = 1 is such that|X1l< 1, and assume
that 'Xm l|< 1, 1f for X, as given by (4.6-11) the relation given by (4.6-5)
holds by induction, the existence of this relation has been proven. By this

procedure we can prove that the following conditions are sufficient for (4.6-
3):
T =
A 'um+i joe o, Ut Untd >0 (4.6-12a)
(4.6-12b)

T
Z;‘lum+%|< 2, 1f u_y Uy <0

The condition given by (4.6-12a) is not as restrictive as (4.6-9) while (4.6-
12b) is just as restrictive. Because (4.6-12b) has to be satisfied only if the
velocity u changes its sign and hence is small, it seems reasonable to assume
that (4.6-12a) imposes the real restriction. By a similar analysis one can

prove that in order to control amplification of rounding errors for (4.2-4d),

(4.6-12) must hold as well.
If we analyse the FDM for the very shallow regions it follows that for (4.5-

5), (4.6-5) is always satisfied.
For equations in the y direction obviously similar conditions must be ful-

filled. It follows that in order to control the amplification of rounding

errors the following relations are to be satisfied:

Max ( Jum+d,n | Fx | Vm,ned ] &9 € 4 (4.6-13)

The condition given by (4.6-13) seems to be the only restriction for the time
step for the FDM treated in this chapter. This restriction disappears by the
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application of partial pivoting, but it increases the computational effort.

By application of nonlinear extensions (2.3-7) this restriction can be cir-
cumvented. For many applications, however, (4.6-13) is not very restrictive;
accuracy considerations, see e.g. section 3.5, will often impose more severe

restrictions.

For the boundary schemes described in this section the condition given by

(4.6-5) is satisfied. The effects of the discretizations of Vuy, uvy,

v(u_+u_ ) and v(v_+v ) have been neglected for this analysis. These dis-
XX yy XX yy

cretizations only contribute to reducing the restrictions given by (4.6-13),

as can easily be verified.

4,7 Concluding Remarks

In this chapter a numerical method has been constructed based upon nonlinear
extension of a linear method. The advantage of first considering the lin-
earized equations is that linear stability and efficiency can be studied first
and then the nonlinear aspects of a FDM.

There are no arguments to support the opinion that fully nonlinear integration
by the trapezoidal rule is more accurate than a locally linearized integra-
tion. Both methods are second order accurate. In fact, a simple nonlinear
example could be constructed that is integrated exactly by local lineariza-
tion.

It is important that the boundary treatment is such that the amount of compu-
tational control remains bounded in order to minimize the overhead.

At inflow boundaries it seems difficult to construct a stable boundary advec-
tion treatment with an order of consistency greater than zero.

For practical applications zero order of consistency for the advection oper-
ator near inflow boundaries seems to be sufficiently accurate. Stability is
more important near open boundaries.

Application of a dissipative FDM in very shallow regions improves the robust-
ness of a FDM without effecting the overall accuracy.

The matrix structures of the implicit equations are such that in order to
control the amplification of rounding errors the maximum timestep might be
restricted. For practical applications these restrictions are not severe;
moreover, they can be circumvented by application of the unconditionally

stable Angled Derivative method or by partial pivoting.
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5 Numerical experiments

5.0 Introduction

During the development of the FDM of chapter 4 many numerical experiments were
made. These may be subdivided into two classes. The first class concerns
numerical experiments with simple geometries. Even so, complicated flow pat-
terns, containing eddies, are induced. The experiments in this class were
performed to study the stability properties of the FDM, the effect of the size
of the timestep, the sensitivity of the FDM to the variation of the value of
viscosity, and the effect of perfect slip boundary conditions versus no slip
boundary condition.

The second class concerns the application of the FDM for practical problems.
These experiments were performed to study the flooding and drying procedure,
the accuracy as function of the timestep, the ability to solve steady state
problems, and stability.

The approach followed in this chapter is purely numerical, i.e., aspects con-
cerning calibration with prototype measurements are considered to be beyond
the scope of this work.

In section 1 the numerical experiments concerning eddies in simple geometries
are described. The importance of advection, viscosity, and boundary conditions
will be shown with respect to the resulting flow pattern.

Section 2 contains the description of practical experiments considering an
estuary, the tidal inlet of an estuary, and a river section.

The textual explanation of this chapter is brief. The major part consists of

figures that illustrate the numerical experiments.

5.1 Simple geometries

In this section the following aspects are treated: (i) stability of the advec-
tion discretization, (ii) effects of viscosity, and (iii) effects of perfect
slip and no-slip boundary conditions.

These aspects were studied by means of two test problems with a simple geome-

try and a uniform depth.

a. Flow past a jetty
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The geometry for this experiment is given by figure 5-1.

///////////////////////////////////////////////////////////////////4//////////////////
> v

velocity < water level
boundary P (time history point) boundary
(u=0.5m/s) ( h=25.C m 12 py (z=0.0)
> J > =
= 6 Ay{ E o
T7T7TTTTTTTTTTTT T T T T T T T LT T T T T T T 1 T T 11T 1T
x=0.0 x=13 Ax x=59 Ax

Figure 5-1 Geometry of flow past a jetty

The rectangular basin of figure (5-1) has a length of 59 Ax and a width of
12 Ay where Ax = Ay = 25 m. The depth is uniformly 25 m. A jetty is situated

at x=13 Ax . The length of the jetty is 6 Ay.

We consider a steady-state problem that is initially time—-dependent. For this

aim at x=0 a uniform velocity u=0.5 m/s 1is given as boundary condition and

at x=59Ax a uniform water level =0 is given as boundary condition.

Because of the jetty, the influence of advection is very important, as can be

seen from comparison of the flow patterns of figure (5-2 g) and figure (5-4).

The numerical values of the parameters for figures (5-2) - (5-10) are given by

table (5-1).



Table 5.1
Figure
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comment

(5=2 a=g)

(5-3)

30,27 100

30,27 100

63

63

These figures show the development of an
eddy behind the jetty. The 1length of the
eddy grows larger than the domain of the
problem, because of the small amount of
dissipation.

This figure shows that steady state 1is
reached only very slowly, which is also a

result of the small amount of dissipation.

(5-4)

(5=3)

30,27 100

30,27 100

63

63

This flow pattern is obtained if the advec-
tion terms are omitted. Comparison with
figure (5-2 g) shows the importance of
advection.

Absence of advection gives a real steady

state solution, as this time history shows.

(5-6 a-g)

(5=1)

0

10,9 100

10,9 100

63

63

Development of the eddy for a smaller time-
step. The final stage shows two eddies. The
influence of the timestep is noticeable.

Steady state is reached slowly, but faster
than for t=30. Yet a time-dependent distur-

bance remains noticeable.

(5-8)

30,27 0

63

This standing wave superimposed on the
numerical solution 1is obtained if both
boundary conditions are purely reflective.
Comparison with figure (5-3) shows the
important influence of (4.4-9) when e#0.

(5-9)

(5=10)

10

10

30,27 100

30,27 100

63

63

Addition of viscosity shortens the length of
the eddy as follows from comparison of
figure (5-9) with (5-2-g).

Addition of dissipation gives very fast

convergence to steady state.
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(5-1)) for flow past a jetty, =100

Time history at P (see fig.

Figure (5-3)
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Figure (5-6) Development of eddy behind jetty



=:lV&=

- - - —
e e T =
- - - 0L 7
P R
- ————

THBTHUNTTTUETeETTeT TS eweeS

.. PSP,
“///;bo..-o-...---‘
oalf’......-...-..oooa-----o-‘-‘s\\\\\\\\s‘s~“~~~
anssrr (RS T T TR U R
PR e e Ay s s s e
.

e

e R
9. 0.8,.8 0.0 .0 06w 9w 8

o000
L e, 0 SR I T T S

e

~
- ..

SEBECLD OB LW

.-~
“ v e e s

D T I
B T PR P
- -

P
P

P
cosssves
R
oo ee

* o o o .
- -

Figure (5-€ e) t

- - - - -
- - .. -
- - ., .-

- ———— -
- PSS,
PP o 2@ o e ..l A A A A S - —— - — " Sy e e T Ve V. . e
P e e T e T T T
D

WPPIEE T 4w
B S S S S

PPN S

---- .-
P g

8 6 08 5 80 08 0 0000w es
ORI DL N e R G S T S A e TS T

P T I I A
PR RSP T I | U RS TR T ST YR SO AR
PRSI S SR | [T ECR SR SIS S O S O O PR S-S S S S S B R A e R S
D T T T R e e atade At L B I L
ceevsssssssess ittt eessseesemm- et > @ o o e s s -

Figure (5-6 f)

.. .- ——
T
B e
.. -

P T e -,
nnd’/&u--.....

- =
OB P B ot w . . . . s s s il S A s - - -

B e e A 2 A I R

o
oo-.-a.ol""..-.....--'l‘ln--

L B B ¥ ST 0B A ot o (ORI R UL . el et T T T o i S AR U K i Jtel Jak i R T R
il 00 A0 T G AU ORI R G S I L T T S S IR e S BB o o e oni e e b o B S Uk o P o B )
B A e T T I e
B T T T
it C st s i s s s i s s e e S e e e e e e s e e eSS ERECCSe e -

Figure (5-6 g) t = 180 min.

Figure (5-6) Development of eddy behind jetty



= B F G

NI A'N

oz e W .‘- J-' l- ‘.l"P

5_ 8
2_' L
é :!
' v
] A
' g
Y £
ﬂ g
Y B
| b6
Y ot
Y &
L 5]
1 ['-
2 e

v v

A k)

g L

.
T Tl - el wle et
s . s dYN+ W NI 8v-H

Figure (5-7) Time history at P (see fig. (5-1)) for flow past a jetty

e = 100



iy N

3 S/W NL A'N G
I s R T O T S i AP W T Sk, B okl
|
o bn
d £
T r
b 5
. +
? ?
~] Mew
4 =
] L
2 o
]
o~ "!
g 2
= )
B - é
% “gx
z
4 |~
d vy
=
=
’ -
L]
-:- -
L ]
-] =
H o
Ll 8
8 |8
5 -
,-4 »'-
4 L
& L]
L8
4 -
wie ' i - sl- eede

Figure (5-8) Time history at P, (see fig. (5-1)) for flow past a jetty with
purely reflective boundary conditions
v=0,1=230,e=0



—_—— — - —

e
.- - - ——
.- - - - ——
- P i

- - . . - - ———

- . - - - — - - -

——— - —— - — - -

- . W W W B . . . . . . .-

.- P e,

--‘-o-ooﬂ’///‘n---~-~~----‘--‘-socvcooco-q---oo-o--—oo-

e ee e e e ...

-

- - -

PR R P N ;P PR IR R R i e e I peR g R S
Eddad b 40 0 0 AN LR R RN S PG GG e
B I I I I B L I . R L I R R R L R
E IO e N ) e PSRRI R = R SR R P R S - P S N S TN D o 0] P
A A R e R e g e e S A T @ GO i B W | L e AT s 8
S T oo e G et RO SR e e
Figure (5-9), steady state flow past a jetty with viscosity
3 s SOV .c. 5 OO kST UNERY ol TG ool ALY (o VML L B R G UL oo AR5 R o T, o ALK R xS o S e PV 5
~
L
r L "
L

+NAP

-

1

H-AQ IN M

-}.u

T 7 T T T T T T T

T
..

T

T

2

T

U,V IN M/S

Ve 168 1ee | 2.8 | 2.8 ' 2.4
TIME IN HOURS

Figure (5-10)

260 2.8

Time history at P (see fig. (5-1)) for flow past a jetty with viscosity

=OELT



= 178 =

b) Flow past a backward step

For the geometry of figure (5-11) we have chosen time-dependent boundary

conditions. This model represents a tidal flume, see Wang [4].

y=0.8 m

R ! i
T TN T T T T T T T T T T T T T T AT T
x=0.0 *=1.0m x=3.0 m x=5.0 m

Figure (5-11) Tidal flume

Again the geometry has been chosen such that the influence of advection is of

crucial importance for the character of the flow pattern.
The initial conditions are given by:
u(0) = 0, v(0) = 0, £(0) =0

The boundary conditions are given by:

At x=0:
i

w(it) =0, () = T u“win.gk, 0t < 758
1 3 j

where

2 ~ % H
wy =150 3 3=1, 2, 3, u; = 0,375 m/s, uy = 0.05 m/s, and ug = 0.01 m/s

At x = 5,0:
C(t) =0, 0t <5

3
Clty =% € 'sinw; (£=5) 5< €< 75
j=1 3 3

~

¢, = 0.021, Cy = 0.001 and Cq = 0.0005
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For the initial and boundary conditions given above several numerical values
for v and « were used. The results are illustrated by the figures (5-12) to
(5-15). The grid size was Ax = Ay = 0.025 m. The timestep was 1t = 0.125 s. The
numerical values for v and a are given by table 5.2. The Chezy coefficient was

C = 62.64.

Table 5.2

Figure v a Comment

5-12 a-d 2.3 1074 1 This example has a perfect slip boundary condition.
The growth of a time-dependent eddy is demon-
strated. Only one eddy develops. The flow in back-
ward direction follows the rigid walls.

5-13 a-d 2.3 1074 0 This example has a no-slip boundary condition. Here
the emergence of several eddies is shown. Despite
the complicated flow patterns stability was main-
tained. From a qualitative point of view the flow
patterns are according to the measurements of Wang
[4]. The development of secondary eddies is too
fast, however.

5-14 a-d 10"3 0 The increased viscosity suppresses the development
of secondary eddies and changes the flow patterns
completely. This example has a no-slip boundary

condition.

A 0.1 By changing the slip condition at the rigid walls

5-15 a=-d 2.3 10~
the emergence of secondary eddies is delayed, which

improves the agreement with measurements.
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Figure (5-12-b)
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Figure (5-12-c) t = 25 s
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Figure (5-13-b)
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Figure (5-13-¢) t = 25 s
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Figure (5-14-a) Development of time-dependent

increased viscosity, t = 5 s
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Figure (5-14-b)
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Figure (5-15-b)
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The following conclusion is drawn from the experiments described in this
section:

stable results can be obtained for rather complicated flow patterns, because
of the influence of the advection operator, without the introduction of numer-
ical viscosity.

For these situations the FDM of chapter 4 allowed very large timesteps as far

as stability is concerned.

5.2 Practical applications

During the development of the FDM (4.2-4), the method was applied to several
practical situations. In this section we describe three applications, all
relating to estuaries or rivers in the Netherlands, see figure 5-16, but they
are not a thorough description of all the physical aspects of the waters under
consideration. These examples illustrate three numerical aspects: (i) the
flooding and drying procedure, (ii) the effect of the timestep, and (iii) the
ability to solve steady state problems.

a. Eems-Dollard estuary

The Eems-Dollard is an estuary in the northern part of the Netherlands. We use
this application to demonstrate the flooding and drying procedure described in
section 4.5. For this aim this estuary is particularly well suited because
during a tidal cycle about 50 percent of the total area changes from dry to

wet and vice versa. The following numerical values were used:

Ax = Ay = 300 m
T = 150 s
5 = 0.025m
o
61 = 0.32m
v =10m"/s

The Chezy coefficients were derived from the Manning coefficients. This rela-

tion is given by:

c = 1.49/n u'/® (5.2-1)
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where 1 denotes the Manning coefficient. The numerical values of this coeffi-

cient are varying in space. The average value was about 0.02.

The initial geometry is given by figure (5-17). The boundary conditions are
given by figures (5-18) and (5-19). The geometry and the flow pattern as
function of time during a tidal cycle is given by figures (5-20 a, b, c, d, e,
and f).

The initial conditions were zero velocities, and the water levels were at the
average zero level. This is an improper choice of the initial conditions
because in general in an estuary zero velocities coincide with maximum (high
tide) or minimum water levels (low tide). Therefore these initial conditions
will generate a substantial initial disturbance, but it does not cause instab-
ilities, as is illustrated by figure (5-21).



TR

3

$

. 8 8 3 3
R R T L e AR T R R AR R R T

- 199 -

|--.--o.--|.':...-.-....-...-..--.-o--o-.......--cqa---lutln|-o--uc-”---.uc...,......

(A RERNRER RN RN RARARRNY

w1
ATy

open boundary :-3 :
N w 5
[N - ok |
h-H =
! %
i :
RN o -
odetetald -
. 60
o .
nes B s <
an H :
; u= )
i i n s -
open boundary — —- -
””"'”'l”lll"lHE”””f.lf”fx.!ghlnlnlll T 40
: L) -
as) ERE S
. TTTITIITIIIIIIIN —
1 jamssses) TTT1 e
R L @ -
- =i : -
s W B g s
. H - ]
=t E@ R : .
TIIIIL: 5 % .
= RX e s
S -
: H T2e
- Bt
.10

0--.-----«!:---.:-..'........qlo.-u--u--|.......--I--u---~--l----~--|-l---u-....l.....,

Figure (5-17) 1Initial geometry ’—%-{ dry tidal flats F-closed boundaries



=200 -

~ <+
o) ~
P e
s gL ks &y
2 L § :
e |-§ 19
S 8 4N
S R -
@
8 | ;A
_g T
§ {~
: EE
g I D -
o ]
° [ Bl
et 5 -
- 3 L& T8
z ~ <+
g b— —
~ . %3 ol
- m-
~
: i<
g [ o™
9 4
i
£ ¥ ]
£ .0 =49
L bl K
: i
: .
{w
: - 2=
g [ g
® I~ -
- S 4N
N 3
- 2 -4
e
! 1o
L -
é- I
g | -
£ 4
§~;...I11..ln;;nl.;..l.:-.l..1.l.-||I|...IL;;-
LT, VR T S e T T
N - - u - e,
!

' ! |
CSJF1LTWO NOILVATTIT dFLVM

Figure (5-18) Boundary conditions

17

.

19APR

7

.

18APR

AT STATION

WATER LEVEL



=20l

P +
2 1 I L5
T o T B I o o e B
gL .
I A 1
© e 1o
T L& 1R
< o«
= -
& 4
g B =
- <
5 -4
: e
I o
i e
3 e
b E ]
N___ D-—-
» & ]
=2 =
w O—
e i S
ol o [ o
&8, —
f ~
& =
i ™
s
1§ ok
<k 3 0 =
S &
e Gy
= e i
§ [ N
I s
E' -8
z I B-JCB
4 -
; S
g | |
"
et i
2 -
L 4
e ) |
=1 4o
g L =
g i S
g T ;
I -
g~l|lllIllll|||I'\Ill‘|||||v|llll|llllllll||.|
e W wiE LB E B =W
o~ e | — — N §

! !

(S&3i3W) NCILVATTI3 d31VM

Figure (5-19) Boundary condition

77

.

19APR

77

-

18APR

WATER LEVEL AT STATION



- 202 -

1 1L 30 40 1]
R R R R T N T R R TR )

IALIIRIRIRI LU L

. SRR S Tl TR
p ..Qf'eo\::\n-c.
- N A LR
w ? ot 58N 8% 00
- t s o\\\.o.: XX
: .8 <N KA
» o":_ .0\}*0.
> i « 8 = 8
e Rk - e\ &
3 [ I .n\:;-
5 Y o)z s L3
W 4+ el .0!}{-' H
- ¥ = i, S H-H
S.Z F!: .-\‘;E:
5 G Wyl Mgy, 0} * H
: s TP R
. .. e nu“l
p s AR X
49 .
b __]n~ --"\'\\t.o..—'..oo-o-n-o-oo-~oo
- anll -‘"\\k.bﬁt.-.—ﬂ—d--llllllllll_llll @ S SB e L
% 1. v W O G O . r P e e P
. el w JU SC SPSPED AP SPEPEPEPEpEE PR SN " R b
- I * s e s e c e e s s sennNw s ;.'--
-~ U L ___F

107
Desovaoonotosoonsosebosesosnserstosasosrosbonsoseoosbosnssossobonsnsosssfosntsensslornsny
1

JTINE- 8.00 HOURS L]

Figure (5-20) a Geometry of tidal flats and flow pattern

I R A N R e R RN EE R RN

4

10



s !lnullvlcﬁa-n-llg-l-l-ocgt-rvlnlngtnnn-no

P N B R R R R N T RN R RO N

-
@

-

- 203 -

5
..-noco--}’-........|¢.---n--a|-.-----.f’|-u-|.---l-""""I‘"'""'l""""'l"""

L
g,
K 4 Y & v & & %8 %IEE
R R
. f d € WY & & & ¥ 9

L A .
.« gite .
PTON
.
. ¥
B
L
)
.
i
.
.
IO
-

590 & - ST e e .
PP S S ol

veesloovnvnsvsloonisnnsetlonnsvensslosnrsssensfosenns
Sesonsesoatonsocossersbosessscrelorvoee %o

JTIME=10.00 HOURS

Figure (5-20) b Dry tidal flats

L R R R R R R N N N RN RN R AR R R L]

10



- 204 -

° 20 4
I R I T I I R O R R

l‘i l.l I.I le l{ '£ l‘l "I It' l;l '\‘T-f_:g
4¢ 0 RN R
R R SRR R -
70 % ELEIN L Vb G v S
$¥ 4 v Vb
T RS RS
IR e, B e S R
t & * 0 0 x \ \ ¥ ‘ . :- «
60 L GE G \ \ [ i
‘ PN BTN ‘ \ \ ‘ 1) ,:::
SN I B B T
bt VY M
w EEIEIENNNE
LUE IV
3‘1‘15‘;.::3?%?
& :R'--w\
: N

\‘\‘—‘F".-"‘

[ - s s s u s ¥

LLLLLL]

B
Tt

“**‘)—Q—Q’lllllllllllllr 1
]

H
O e et o P CC ."
00 O A e e T b N N e g TNyt

L JE L S
.

N T

E': Ve e e Al L Eadie 2t 2B 0 R R )
N

N

:

LI

111
LR Y T

1l

R L T e T R o T R B B R R e SR I I A

-

R R e R R R R O

MINE«12.00 HOURS

Figure (5-20) c

——
-

i
2

R R R R I R R R R

I N N R N R N EE R R RS FE TR NN


http://-�-f.gr

- 205

R N R R N IR

49 50
MR

peerrray

10

R R R I R R R A

1

=
~

- 2 ? 2 ] 2 "

Te s e
=6 e
b )
A
% e
o o

rrevaena s

&

=
--H

IIIITIT
]

‘ln‘Qt‘\\‘-..-

P I

f
s

2. e o o

ST L R R L e G

N
b4
H
0 .

L I N RS SRR IR T B .’
TS U ARE SR S )
I I S B o
aot.b...bbo—-ﬁl
o o o ® o o

. o

R R N A R O R R R R S R

g b3 ¢ 2 2 e -

7

R R N IR R

JTIME=14.00 HOURS

Figure (5-20) d



(1]

or

R R R R R R R R R |

@ (0z-g) @and14

SHNOH 00°97-3W1iC

R S B S T o R T I I R I R R )

LB 0 @ ¢
Bt o
ple;

LI

Tnm

R N R R I S SO R )

= 90T -

g b ¢ ki 2 e

e

D R R I R R R R A R R AR R R RN A RN RN



=207 =

AR QIRIRIRIRILIALL! u___a

~
=
»

fer N ®

by
®

R B R R R IR I A i I I Y

7

e 8 B e aiaid e e srew ST &N

X
t e \: -
t e X o
i tias s N H
?s. 0t -]
a0 X

‘QQ 0‘ ne
L . =
- o .. o o
e S ies v
t e o 4 d

t e

'..

S

. R w

L I e L Dt
N ol e L W |

D’i..‘.;

-
ég

’

f s

f+H

t

t

t

‘

L PR el el el B I

LR B A ettt et P P P Y Y
N = LR A R 2 adl I I R PSS

. L e R S O N i
> Ne R o ey SE S EE R T S I ol S R s H
4 ot

- H s ccceccessscennnng. .o ot N
% 5= 7 o EERERR A Rt eeRRUeoeo oo o TH

- e 0.!-.-!‘.!-...- A B

- el 9 0 s teue 8L 0088w wpwlefic HoNEE

- . LA R R T URT S B B R R e S

® . S ol (R e =
2 ® e e, s ot Eeiiars & 4Ty 3

" H -

- 11 & o ¢V e s -0 o' p %

- -4 -

1 ' ul---QQ-..---z:

2! L A N R R o

. 1 A sl s A SRS MR Sy o
107 H teled,; § SR et .

- ' 3

- HCIY H S

= ) @ : i

| & = = o
s 18 88 6 Mt :
1 1 it v
* I ) MU
) 2

R R S F R R N ]
l.........n.........o.........o.........“

MTINE=18.00 HOURS

Figure (5-20) f

Pasonvvennbonsvovevelosonnsnnnlooovorssnnlovnnnnnontlossonnnnctlonnnnevnnlonnnneny

3

s

-



=208 =~

~

I IR AR A B RSl DS B s SR S i

¢ |8 :

e |8 i

S 3 -

N o _* -

~

8 | g =
- g .
2 %

-

8 o
~ e, C\~
ety oo
AL 5o
ot % g
5 :
2o S ]
7 ~
~ b -—
= ~

o))

R o ]
s - &~
S I o .
-

o ke
= ik < |
& o

u Vo

- u_l-

. a bl
z
£ r =
B o &
I % -
v
Eixh ¥
8 |- 1
s 1
- . -
@
$ L =
g i
g I i
&

E RN WISV ST S 37 e VAo (T Y ) Ul e 4 TS G Tl TR S 28 ) T TR e o TR S WA ST T
' ® Ta} ® Te} ® N ® Tg) \S] N
~ — —_ | -— — o~ o~
|

Figure (5-21)

(SFidW> NOILYATTIT d3ivM

Time history at P

12 16 20 2%
L

19APR

2 16 20 28
7

18APR

.

>

WATER LEVEL. AT STATION



*:i209.5~

The conclusions which can be drawn from this example is that the numerical
drying and flooding procedure does not reduce the stability of the FDM of

chapter 4. Even wiggles are not being introduced by this procedure.

b. Tidal inlet Eastern Scheldt

In this section we describe an application of the FDM (4.2-4) to the flow in a
part of the tidal inlet of the Eastern Scheldt. The Eastern Scheldt is an
estuary in the southern part of the Netherlands, see figure (5-16). A large
storm surge barrier is under construction at the entrance of this estuary. To
support the construction works a sequence of numerical models has been set up
by Rijkswaterstaat in collaboration with Dr. J. J. Leendertse of The Rand
Corporation, USA. The grid size of this sequence varies from 400 m to 45 m. In
this section we describe the application of the FDM of chapter 4 to a model at
the tidal inlet with a 90 m grid.

Again we use this example to study one particular aspect that concerns the

effect of the size of the timestep T on the flow patterns. The following

numerical values were used:

Ax = Ay = 90 m
n = 0,02
5 = 0.025m
o
61 = O.SZm
v = 15mn" /s

The values t = 60 s and 1 = 300 s were chosen for the timestep, which for this
estuary implies Courant numbers of approximately 17.5 and 87. According to
phase and amplitude errors calculated for purely initial value problems with
uniform depth, both timesteps are sufficient to obtain accurate results. Yet
for the latter the flow patterns are calculated rather inaccurately as follows
from comparison of figures (5-22) and (5-23) relating to maximum velocities at
flood and figures (5-24) and (5-25) representing maximum velocities at ebb.
The tidal range of the model was about 3 m. Stable results were obtained for
Courant numbers of about 100. Accuracy required a much smaller Courant number,

which confirms the conclusion of Benqué et al. [1].
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The conclusions which can be drawn from this example are twofold:
(i) Also for practical anplications the stability of the FDM onf chapter 4 is
practically unrestricted.
(ii) The accuracy limits the maximum timestep. This is possibly due to the ADI

structure as has been explained qualitatively in section 3.5.
c. Steady river flow

In this section we describe an application of the FDM (4.2-4) to a steady
river flow problem. The purpose of this model is a detailed flow pattern study
of a section of the river Maas, see figure (5-16).

This problem has also been studied by Vreugdenhil and Wijbenga [3], who ap-
plied a numerical method as described by Leendertse [2]. The flooding and
drying procedure is applied to calculate the flood levels.

It was found that the steady state flow pattern, see figure (5-26), could be
obtained by using a timestep t = 20 s, which was 10 times as large as the
timestep used by Vreugdenhil and Wijbenga [3]. This led also to a decrease of
the computational time by a factor 10. Moreover the addition of viscosity,
purely for stability reasons as described by Vreugdenhil and Wijbenga [3] was
not necessary. This example in particular shows the increased stability prop-

erties of the FDM compared with the classical Leendertse scheme.

For aspects concerning calibration, the reader is referred to Vreugdenhil and

Wijbenga [3].
The numerical parameters are given by:

v =1 m2/s

60 = 61 = 0,02 m
Ax = Ay = 30 m

T =20s

The Chezy coefficients were calculated according to the White-Colebrook for-

mula given by



=gy =

10
C =18 1log (12 H/p) (5.2-2)
where p denotes the bottom roughness coefficient.

At the open boundaries discharges were given at the inflow boundary (Q = 3750

m3/s) and water levels at the outflow boundary.

The calculations for this example were performed in cooperation with

ir. A. Wijbenga of the Delft Hydraulics Laboratory.
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5.3 Concluding remarks

The FDM of chapter 4 is a robust method that is applicable to a wide range of
simulation problems varying in size from shallow seas to tidal flumes in

hydraulic laboratories.

The unconditional stability of the FDM has been confirmed by practical experi-
ments just as has the absence of artificial viscosity. The ability of the FDM
to represent the real viscosity accurately is very important for the simula-

tion of complicated flow patterns.

ADI structure of the FDM seems to limit the maximum timestep. Because the
implicit equations can be solved very efficiently while the storage require-
ments are minimal, we believe the FDM is competitive to a fully implicit
method as described by Benqué et al. [l]. Moreover, for this fully implicit
method the maximum timestep is limited by the advection approximation.
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6 Conclusions

A numerical method has been developed that is applicable to a wide range of
practical, shallow water flow problems.

Considering the computational labour per timestep and the storage require-
ments, this method is very efficient, especially if its robustness is taken
into account. Its numerical dissipation is minimal.

Probably more important than the method itself is the description of the step-
by-step process by which it has been developed and the number of details that
were considered. Only by considering many details, such as tidal flats or
boundary treatment for complicated geometries, which from a mathematical point
of view are perhaps not very interesting, can a numerical method be developed,
that is capable of solving practical problems.

Obviously the method described here is not the only possible numerical method
for SWE. If minimal storage requirements and robustness are considered equally
important, this method is very efficient. If the storage requirements are less
stringent, then the method can easily be modified into a fully implicit method.
The approximation of the advection operator is in fact already fully implicit.
This would circumvent the disadvantageous effects of the ADI structure with
respect to the maximum timestep.

The staggered grid seems a very important aspect to guarantee robustness and

simplicity of boundary condition procedures.
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Notation

B R

Chezy coefficient

Courant number

finite difference operators

coriolis parameter

external forcing functions of momentum equations
acceleration due to gravity

water depth below some plane of reference
total water depth

finite difference operators

time

velocity in x direction

velocity in y direction

spatial coordinates

weighting factor for non slip and perfect slip
boundary conditions

threshold for flooding or drying

threshold for application of dissipative numerical
approximations

spatial grid sizes

weighting factor for non reflective part of open
boundary conditions

water level above some plane of reference

Manning coefficient

bottom roughness coefficient for White Colebrook formula

viscosity coefficient

time increment



Appendix , Notation (continued)

k
u at m, n, k denotes: “m,n s

k k
uy, at m, n, k denotes: (up,y .= “m—&,n)/Ax s

k k
u__, at m, n, k denotes: (“m,n+§_ “m,n-i)/Ay s

kﬂ uk-*)/‘t s

u_ . at my, n, k dgnotes: (“m,n- m,n

k k
uy, at m, n, k denotes: (up4y ;= um,n)/Ax s

k
u_, at m, n, k denotes: (“m,n' )/Ax

Ym-1,n

k k
uyy at m, o, k denotes: (“m,n+1- um’n)/Ay ’

k k
u__ at m, n, k denotes: (“m,n_ “m,n-l)/Ay s

k k
u* at m, n, k denotes: (um+i,n+ “m—&,n)/z g

X uk )/2 and

o
u +
m,n+d myn-%

uw’ at m, n, k denotes: (

= k
u at m, n, k denotes: (u§+%’“+§+ “z—},n+i+ “i+§,n-§+ u —i,n-})/A .
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Summary

Calculations of velocities and water levels in shallow seas, estuaries or
rivers are often based on shallow water equations, which have many methods for
numerical solution. Often these methods fail when they are applied to situa-
tions with a complicated flow pattern. Numerical problems such as spurious
"wiggles" or instabilities are often solved with the addition of numerical
dissipation.

A description is given of a method that is applicable to many problems varying
from the entire North Sea to a tidal flume in a hydraulic laboratory. This
method is developed step by step. First, simple examples illustrate important
notions of numerical analysis such as convergence and stability. Overspecifi-
cation of boundary conditions leading to useless numerical solutions is also
illustrated by means of simple examples.

For a simple advection equation a number of numerical methods are compared. A
few new and efficient methods are introduced. Because of their structure these
methods can be implemented for the approximation of the advection operator,
within ADI methods for the approximation of shallow water equations.

For simple, linear, shallow water equations the advantages of '"staggered"
grids are explained. "Staggered" grids are not only efficient but are also
useful for eliminating wiggles.

By means of the aforementioned advection method the Leendertse scheme 1is
modified such that some theoretical disadvantages of this scheme are elimi-
nated.

This modified scheme is extended, including details concerning boundary treat-
ment and tidal flats, to nonlinear, shallow water flow problems. Some varying

examples illustrate the applicability of the method.
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Samenvatting

Ondiep water vergelijkingen vormen dikwijls de basis voor de berekening van
snelheden en waterstanden in ondiepe zeeén, estuaria of rivieren. Voor de
numerieke oplossing van deze vergelijkingen zijn veel methoden bekend. Dik-
wijls echter falen deze methoden indien zij worden toegepast voor situaties
met een ingewikkeld stromingspatroon. Numerieke problemen die zich dan kunnen
voordoen, zoals "2Ax golven" of instabiliteit worden dikwijls opgelost door
toevoeging van numerieke dissipatie.

Dit werk bevat de beschrijving van een methode die toepasbaar is op een ruim
scala problemen vari&rend bijvoorbeeld van de gehele Noordzee tot een getij=—
goot in een waterloopkundig laboratorium, zonder dat numerieke viskositeit een
overwegende rol speelt.

De methode wordt stap voor stap ontwikkeld. Eerst worden aan de hand van
eenvoudige voorbeelden enkele belangrijke begrippen uit de numerieke wiskunde
zoals stabiliteit en convergentie nader toegelicht. Eveneens met eenvoudige
voorbeelden wordt geIllustreerd hoe overspecifikatie van randvoorwaarden leidt
tot onbruikbare numerieke oplossingen.

Vervolgens wordt voor een eenvoudige advectie vergelijking een aantal numerie-
ke methoden vergeleken. Enkele nieuwe en effici&nte methoden worden geIntrodu-
ceerd die vanwege hun struktuur zeer wel in te passen zijn als numerieke
advectieve operator in ADI methoden voor de numerieke oplossing van ondiep
water vergeli jkingen.

Voor vereenvoudigde lineaire ondiep water vergelijkingen worden de voordelen
van "gestaggerde" roosters uitgelegd. "Gestaggerde" roosters zijn niet alleen
effici¥nt maar vormen ook een methode om zogenaamde "2Ax golven'" te elimine-
ren.

Door middel van de reeds genoemde advectieve methode wordt het Leendertse
schema gemodificeerd zodanig dat enkele theoretische nadelen van deze methode
worden ge&limineerd. Dit wordt uitgelegd voor lineaire vergeli jkingen. Dit
schema wordt tot in details, die betrekking hebben op randvoorwaarden en
droogvallende platen, uitgebreid voor de numerieke oplossing van praktische,
niet lineaire stromingsproblemen in ondiep water.

Aan de hand van enkele uiteenlopende voorbeelden wordt de toepasbaarheid van

de methode geIllustreerd.
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Stelling £

Bij toepassing van de matrix methode voor de bestudering van stabiliteit van
numerieke methoden voor de benadering van partiele differentiaal verge-

1li jkingen wordt een vorm van stabiliteit onderzocht die niet noodzakeli jk
convergentie impliceert.

Stelling II.

Door toepassing van gestaggerde roosters wordt, ten opzichte van methoden
gebaseerd op niet gestaggerde roosters, niet alleen de efficientie van
numerieke methoden voor ondiep water vergeli jkingen verhoogd maar ook de
robuustheid.

Stelling TIII.

Voor de numerieke benadering van de advectie operator van ondiep water
vergeli jkingen in de buurt van randen is de orde van nauwkeurigheid niet van
invloed. Slechts van belang is dat men een stabiele en niet een tot

z.g. "wiggles" aanleiding gevende benadering kiest.

Stelling IV.

Bij ADI schema's voor ondiep water vergelijkingen kan de maximale tijdstap

bij willekeurige gebieden worden beperkt doordat het numerieke afhankeli jkheids-
gebied per tijdstap niet noodzakelijk het exacte afhankeli jkheidsgebied

volledig bevat.

Stelling V.

Benadering van de advectie operator van ondiep water vergeli jkingen door middel
van karakteristieke interpolatie methoden in combinatie met "operator splitting"
veroorzaakt voor stationaire problemen toevoeging van numerieke diffusie van de
eerste orde, dit ongeacht de orde van het gebruikte interpolatie polynoom.

Stelling ¥i.

Voor geti jberekeningen van estuaria dient men de beginvoorwaarden bij voorkeur
met hoogwater te laten samenvallen.

Stelling YIis

Bij koppeling van 1- en 2-dimensionale numerieke modellen voor stromingspro-
blemen in ondiep water, waarbij de modellen gebaseerd zijn op verschillende
rooster-strukturen, verdienen koppelingsschema's op basis van karakteristieke
vergeli jkingen de voorkeur.

G.S. Stelling, Coupling 1-D and 2-D horizontal flow models,
Proceedings Int. Conference Numerical Methods for Coupled
Problems, Swansea, 1981.
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Stelling VIII.

De in dit proefschrift beschreven methode voor de benadering van ondiep water
vergeli jkingen is te beschouwen als een methode gebaseerd op

"operator splitting", die echter geen aanleiding geeft tot speciale

problemen met betrekking tot de numerieke weergave van randvoorwaarden op de
tussenniveau's.

Stelling IX,

Voor de numerieke approximatie van l-dimensionale ondiep water vergelijkingen
is het box schema bij uitstek geschikt door de afwezigheid van louter
numerieke golven en de aanwezigheid van met de analytische oplossing overeen-
komende eigenvectoren. Daardoor is de benadering van niet-reflecterende
randvoorwaarden met behulp van het box schema vrijwel exact.

G.K. Verboom, G.S. Stelling en M.J. Officier;

Boundary Conditions for the Shallow Water Equations,

Engineering Applications for Computational Hydraulics, Volume I,
(M.B. Abbott en J.A. Cunge ed.) Pitman Publishing, 1982.

Stelling X.

Bij de berekening van langskrachten op schepen in sluizen met vul- en
lediggingssysteem in de hoofden is het verschil tussen de resultaten ver-
kregen op basis van de starre schip theorie of de flexibele schip theorie
gering. Teneinde stabiliteitsproblemen bij numerieke berekeningen te
reduceren verdient daarom de flexibele schip theorie de voorkeur.

J.P.Th. Kalkwi jk,

Hydrodynamic forces and ship motions induced by surges in a
navigation lock,

Proefschrift, T.H. Delft, 1973.

J. Bosma,

Langskrachten op schepen in sluizen met vul- en ledigings-
systeem in de hoofden,

Waterloopkundig Laboratorium Delft, Rapport R1222/M1481, 1978.

G.S. Stelling,
Rekenschema's voor de water- en scheepsbeweging in een schut-

sluis,
Waterloopkundig Laboratorium Delft, Rapport S105, 1978.

K. den Boer,

Nadere analyse van langskrachten op schepen in sluizen met vul-
en ledigingssystemen via hoofden, bodem of wanden,
Waterloopkundig Laboratorium Delft,

Rapport R1222/M1481-IT, 1979.
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Stelling X1,

Bij de invoering van informatica in het onderwijs verdient het aanbeveling
dit vakgebied vooral te doceren als onderdeel van bestaande opleidingen in
uiteenlopende richtingen en in mindere mate als zelfstandig specialisme.

Stelling XII.

Het volgens sommigen welhaast vaststaande feit dat computers binnenkort het
schaakspel kunnen spelen op het niveau van grootmeesters, terwijl velen dit
spel beschouwen als een aangename bezigheid, illustreert dat het een
illusie is te menen dat computers uitsluitend gebruikt kunnen worden voor
de automatisering van saai en onaangenaam werk.

Stelling XIII,

Een eenvoudige 7/8 tuigage is ongeschikt voor toerzeil jachten.
Dit wordt veroorzaakt door mogelijke instabiliteit van de spanningsver-—
deling in de hoofdwanten.















