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Lessons Learned About Autonomous AI: Finding
a Safe, Efficacious, and Ethical Path Through the

Development Process
MICHAEL D. ABRÀMOFF, DANNY TOBEY, AND DANTON S. CHAR
Artificial intelligence (AI) describes systems capable of
making decisions of high cognitive complexity; autono-
mous AI systems in healthcare are AI systems that
make clinical decisions without human oversight. Such
rigorously validated medical diagnostic AI systems hold
great promise for improving access to care, increasing ac-
curacy, and lowering cost, while enabling specialist physi-
cians to provide the greatest value by managing and
treating patients whose outcomes can be improved.
Ensuring that autonomous AI provides these benefits re-
quires evaluation of the autonomous AI’s effect on pa-
tient outcome, design, validation, data usage, and
accountability, from a bioethics and accountability
perspective. We performed a literature review of bioeth-
ical principles for AI, and derived evaluation rules for
autonomous AI, grounded in bioethical principles. The
rules include patient outcome, validation, reference stan-
dard, design, data usage, and accountability for medical li-
ability. Application of the rules explains successful US
Food and Drug Administration (FDA) de novo authoriza-
tion of an example, the first autonomous point-of-care
diabetic retinopathy examination de novo authorized by
the FDA, after a preregistered clinical trial. Physicians
need to become competent in understanding the potential
risks and benefits of autonomous AI, and understand its
design, safety, efficacy and equity, validation, and liabil-
ity, as well as how its data were obtained. The autono-
mous AI evaluation rules introduced here can help
physicians understand limitations and risks as well as
the potential benefits of autonomous AI for their
patients. (Am J Ophthalmol 2020;-:-–-.
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AUTONOMOUS AI HAS THE POTENTIAL
TO LESSEN PHYSICIAN BURDEN,
INCREASE PATIENT ACCESS, AND

LOWER COST
A
RTIFICIAL INTELLIGENCE OR AUGMENTED INTELLI-

gence (AI) describes systems capable of making de-
cisions of high cognitive complexity; autonomous

AI systems in healthcare areAI systems thatmake such clin-
ical decisions without human oversight, where the autono-
mous AI creator assumes medical liability.1 For example, a
diagnostic autonomousAI system for the point-of-care diag-
nosis of diabetic retinopathy provides a direct diagnostic
recommendation without physician or human interpreta-
tion. Thus, it performs a cognitive, highly complex task
that was previously only performed by ophthalmologists
and optometrists—representing 0.02% of all Americans—
after extensive, specialized training. Such rigorously vali-
dated medical diagnostic autonomous AI systems hold great
promise for improving access to care, increasing accuracy,
and lowering cost, while enabling specialist physicians to
provide the greatest value by managing and treating those
patients whose outcomes can be improved.2,3 Ensuring
that autonomous AI provides these benefits requires negoti-
ating multiple ethical and practical challenges.
Recently, the first autonomous point-of-care diabetic

retinopathy examination was de novo authorized by the
US Food and Drug Administration (FDA), after a preregis-
tered clinical trial, and became part of the American Dia-
betes Association’s Standard of Diabetes Care.4,5 No prior
approval could serve as guidance, and there are significant
ethical and legal concerns raised around introducing
autonomous AI into healthcare.6 We describe the
1LSEVIER INC.
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concerns, go through the ethical and accountability princi-
ples we drew on to create evaluation rules for autonomous
AI, and explain how we addressed them practically through
the clinical trial and de novo authorized FDA clearance
process and during ongoing implementation.
AUTONOMOUS AI EVOKES MANY
PUBLIC CONCERNS

AS STATED, THERE ARE MANY POTENTIAL ADVANTAGES TO

autonomous AI; but there are many concerns, as well,
about the idea of ‘‘a computer making a diagnosis’’—as is
to be anticipated with any new technology. Thus, patients
and physicians are concerned about whether the autono-
mous AI improves patient outcomes3; whether there is
racial, ethnic, or other inappropriate bias7; whether pa-
tients’ data are used appropriately7; or whether doctors
will lose their jobs.8

Will automation lower the quality of care? Or, in
other words, will patients benefit from the use of
autonomous AI, and will its use lead to better clinical
outcomes?

To adequately address this concern, diagnostic AI must
have well-defined and disease-specific indications for use,
which then need to be rigorously validated in preregistered
studies for safety, efficacy, and equity, involving real-world
workflow. In 2007, Fenton and associates first demonstrated
the importance of rigorous validation of AI in the actual
workflow setting, rather than in a modeled laboratory
setting.9 In their pivotal study, the outcomes of women un-
dergoing breast cancer screening by a radiologist assisted by
a previously FDA-approved assistive AI system were
compared to outcomes among women who underwent
breast cancer screening by a radiologist without such an as-
sistive AI. The assistive AI had previously been approved
by the FDA on the basis of a study that showed that,
when used in isolation, the assistive AI had high diagnostic
accuracy compared to radiologists. When this assistive AI
system was tested in the manner that reflected actual us-
age—where it assists a radiologist who makes the final clin-
ical decision—the study showed worse outcomes for the
women who underwent breast cancer screening with AI
assistance. This finding and its implications are consistent
with the FDA’s larger trends toward real-world data and
continuing assessment in the postmarket phase. Outside
of healthcare, even more dramatic examples of the dangers
of premature AI implementation have occurred: a recent
report attributes the catastrophic events with AI-assisted
air travel in part to a real-world impact of an AI system in
workflow and the interaction with the pilot.10 These rising
concerns made clear that any diagnostic AI system,
including autonomous AI, needs well-defined and disease-
specific indications for use, which then needed to be able
2 AMERICAN JOURNAL OF
to be rigorously validated in preregistered studies for safety,
efficacy, and equity, involving real-world workflow.

Does the autonomous AI work equally well on the
vast majority of patients, or does it exhibit inappro-
priate racial, ethnic, sex, or other bias?

There are now multiple examples of this concern about
AI in general: a recent study showed that using medical
cost as a proxy for patients’ overall health needs led to inap-
propriate racial bias in allocating healthcare resources, as
black patients were incorrectly deemed to have lower risk
compared to white patients because their incurred costs
were lower for a given health risk status.11 Mitigating the
risks of inappropriate bias needs to be addressed in the
design, validation, and deployment of the autonomous
AI, as we discuss below.

Will doctors lose their jobs because of the introduc-
tion of autonomous AI?

As an illustration, 1 of the authors of this review
(M.D.A.) received the nickname ‘‘the Retinator’’ in
2010, when McDonnell wrote a (somewhat tongue-in-
cheek) editorial on the scientific research into autonomous
AI for the diabetic retinopathy examination, stating that
some ophthalmologists ‘‘disagree, resent, or even fear’’
autonomous AI for the diabetic eye examination for dis-
ease.12 In consequence, the AmericanMedical Association
(AMA) has recently adopted the term ‘‘augmented intelli-
gence’’—of which autonomous AI is 1 subtype—high-
lighting the role of human physicians in interpreting and
safeguarding the use of many forms of AI in healthcare.1

Are patient-derived data used appropriately for both
training and when deployed?

Typically, the development of any AI requires vast
amounts of clinical data. There are many statutes and reg-
ulations covering patient-derived data, such as HIPAA
and HITECH.13 Ultimately, whether patient-derived data
belong to the patient, the physician, the hospital system,
or even whoever paid for acquisition has not been fully liti-
gated, and as such can easily lead to concerns and contro-
versy. For example, in 1 case patient data for AI training
were obtained through an agreement with a health sys-
tem.14While agreements were in place, patients and physi-
cians were not aware of this data usage, leading to
confusion, so that the Department of Health and Human
Services became involved. In another example, a class ac-
tion lawsuit alleging failure to adequately deidentify patient
data for AI training was initiated against an academic
health system.15 Safeguarding patient data and using the
data properly is clearly an important issue that reaches
into the ethical considerations of the use of autonomousAI.
To realize the many potential advantages of autonomous

AI, it is essential to address these and other concerns,
ethical and otherwise, in an accountable and transparent
fashion. If the concerns are not addressed appropriately,
--- 2020OPHTHALMOLOGY



TABLE 1. Autonomous AI Evaluation Rules

Evaluation Rules: Autonomous AI should be evaluated for the following Classical Bioethical Principles and Accountability, Where Applicable30

Improve patient outcome, as shown by direct evidence-linked clinical literature,

and aligned with evidence-based clinical standards of care/practice patterns

from quality-of-care organizations, professional medical societies, and patient

organizations, while accounting for safety, efficacy, and equity

Nonmaleficence

Beneficence

Justice

Design so the AI’s operations are maximally reducible to characteristics aligned

with scientific knowledge of human clinician cognition, rather than proxy

characteristics

Beneficence

Maximize traceability of patient-derived data, and commensurate data

stewardship, accountability, and authorization, including by adherence to

accepted standards

Accountability

Respect for autonomy

Validate rigorously for safety, efficacy, and equity, using preregistered clinical

studies, by comparing the AI against clinical outcome (or outcome surrogates,

in the case of chronic diseases) in the intended clinical workflow and usage, as

shown by either direct or linked evidence

Nonmaleficence

Justice

Align liability or other protections commensurate with indications for use and

autonomy, without unduly burdening with liabilities beyond other comparable

entities

Accountability

Justice
the risk of a backlash on autonomous AI is real, as has been
the case for other cutting-edge medical advances. After
2003, gene therapy effectively went through a moratorium
on research funding, including closure of research institu-
tions, after deaths and other complications from poorly
overseen gene therapy studies came to light.16 Only in
2017, almost 2 decades later, did the FDA approve the
first-ever gene therapy to treat children and adults with
the RPE65 variant of Leber congenital amaurosis.17
ETHICS-BASED DERIVATION OF
PRELIMINARY AUTONOMOUS AI

EVALUATION RULES FOR EVALUATING
AUTONOMOUS AI

UNTILNOW, THEREHAS BEENADEARTHOF ETHICAL EXAM-

ination of actual AI systems for healthcare. In part, this
lack of scrutiny is because much AI development has
been occurring in private industry and has not yet been
subject to multidisciplinary evaluation,18 though studies
of clinical AI systems are emerging and are likely to
grow over the next few years. Solutions to ethical prob-
lems arising with AI are challenging without observation
of actual applications and an understanding of the spec-
trum of issues arising with implementation. Evaluation
of ethical problems arising with AI is also constrained
by limited methodologies with which to examine ethical
concerns.19,20

Since the potential benefits of autonomous AI risk being
eclipsed by potential harms if ethical concerns are not
addressed early in autonomous AI implementation to
VOL. - AUTONOMOUS AI AND
healthcare, what is a reasonable preliminary approach to
ethical evaluation?
Although conceptual frameworks have been proposed to

guide anticipatory ethical analyses of emerging technolo-
gies19 or to ascertain the values inherent in design ap-
proaches,21 there are no easily generated rules to follow
for ethical human-computer interaction. These approaches
are largely concerned with what constitutes a ‘‘value’’ or an
‘‘ethic’’; ontological dilemmas over where such entities or
actions might reside in people, technology, or their interac-
tion; and questions of agency and intention in design.21 In
addition, they are limited by not encompassing the clinical
contexts, regulatory and legal constraints, and healthcare
economics needed to understand ethical ramifications of
AI design or application choices in situ. Novel ethical chal-
lenges, unconsidered by classical bioethics approaches,
which focus largely on a dyadic physician-patient relation-
ship, are already emerging with implementations of AI to
healthcare, including the enlarging responsibilities of
learning healthcare systems and the capture of ‘‘big data’’
required to support AI approaches.6,7

In addition to the challenges with studying AI ethics,
once identified, attempts at ethical guidance that do not
engage with these multiple stakeholders are likely to be
marginalized or ignored.22 AI applications for healthcare
can involve a multidisciplinary intersection of professional
groups, including medicine, computer engineering, data
science, regulatory and legal experts, and information tech-
nologists, who have often demonstrated skepticism about
the usefulness of ethics teaching or codes of ethics to
change behavior.23–27 Moreover, these disparate
disciplines may have competing interests, such as the
tension between proprietary and confidential design in
3ETHICAL PRINCIPLES



TABLE 2. Aspects Requiring Consideration During the Design Stage of an Autonomous AI System, With Examples, for the Point-of-
Care Diabetic Retinopathy Examination

Consideration Example Application

The population on which it is to be used Adults with diabetes without visual symptoms, with normal visual

acuity, without known diabetic retinopathy

Narrow-use case. Potentially, multiple diseases could be

designed to be diagnosed. The safety, efficacy, and equity

would need validation for each of these diseases, requiring

additional, equivalent clinical trials for each claimed diagnosis.

Diagnosis of diabetic retinopathy and macular edema only

The environment where it is to be used, including sensor hardware In primary care without specific requirements the room, by

operators with no previous expertise in retinal imaging and

minimal training. This required the design of a robotic, easy-to-

use retinal camera, coupled to an assistive AI, to help minimally

proficient operators to take high-quality images

The diagnostic output. Outcome or surrogate outcome outputs

allow linkage of diagnostic performance to studies of

management and treatment.31–34

Positive output indicates ETDRS levels 35 and higher, or diabetic

macular edema, or center-involved macular edema, and a

negative output indicates the absence of these

Alignment with current clinical evidence and professional clinical

standards

American Academy of Ophthalmology evidence-based guidelines

on diabetic retinopathy management, as well as the American

Diabetes Association Standard of Diabetes Care
the software space to reward innovation and deter piracy,
vs an emphasis on regulatory and professional oversight,
informed patient consent, and other transparencies in the
medical field. Despite these and other ethical concerns,
investment in AI for healthcare continues to rise,
expecting to add $260 billion to healthcare by 2025.28 Un-
der the pressure of ongoing AI development, ethical guid-
ance will need to be operationally relevant, and conducted
and provided ‘‘on the fly,’’ both to not curtail innovation
and to provide ethical resources to match the speed of cur-
rent development. Ethical revisions to AI and evaluative
frameworks will have to be iterative.

Many AI developers have already turned away from
ethical analysis as unworkable or not adequately responsive
to ongoing development,29 and have instead begun to pur-
sue an ideal of ‘‘algorithmic fairness,’’ or the ability to
computationally demonstrate a lack of between-group
bias with a machine learning application.11,29 If latent
biases can be identified, machine learning approaches
might be used to correct for them or improve ‘‘fairness’’
.29 However, such approaches assume a comprehensive, a
priori, understanding of where and why such latent biases
are occurring, or risk introducing a complex set of unin-
tended and unforeseen biases, and second and third order
effects, in attempts to correct the initial bias (Goodman
2018).

Drawing on a systematic review of ethical considerations
that have so far been described for AI healthcare applica-
tions (Appendix; Supplemental Material available at
AJO.com), we show in Table 1 an initial approach to
create evaluation principles and accountability for autono-
mous AI systems in a healthcare context. Where appli-
4 AMERICAN JOURNAL OF
cable, we also note their alignment with classical
bioethics principles, such as Beauchamp and Childress.30

The rules in Table 1 are meant to be implemented practi-
cally, and have indeed been implemented in a regulatory
process: some of them were quantified as clinical study end-
points. In the next sections we illustrate the principles by
going through the design, validation, and deployment of
an example, IDx-DR, the first autonomous AI system de
novo authorized by the FDA.4
DESIGN OF THE AUTONOMOUS AI
SYSTEM

DESIGN CONSIDERATIONS CAN HAVE UNEXPECTED AND

profound ethical implications. For instance, in robotic sur-
gery, systems that modify the tactile feedback a surgeon re-
ceives to reproduce a more ‘‘natural,’’ nonmechanical feel
can bias the surgeon’s analysis of when to override the sys-
tem, because the same AI algorithms driving the machine’s
decision-making are biasing the information provided to
the human monitor. In the example, the goal is to create
a real-time point-of-care autonomous retinal examination
for diabetic retinopathy and diabetic macular edema, avail-
able in the primary care office, that is safe, efficient, and
equitable. The latter terms have recently been addressed
in the AMA’s new policy on AI regulation and payment
(2019 version),1 and we discuss later what is meant more
exactly by these terms. Center-involved macular edema
has become such an important factor in visual loss in dia-
betes that we wanted to ensure that this was detectable
--- 2020OPHTHALMOLOGY
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in addition to the more classic diabetic retinopathy and
clinically significant macular edema. Table 2 shows the
most important aspects that required consideration during
the design stage of the example autonomous AI.

DESIGN OF THE AUTONOMOUS AI
DIAGNOSTIC ALGORITHM

AS FAR AS THE DIAGNOSTIC ALGORITHM IS CONCERNED,

the autonomous AI evaluation principles require that phy-
sicians can understand how the autonomous AI system ar-
rives at its clinical decision, not only to gain physician and
patient trust, but also to improve AI safety. Inappropriate
bias can result from incomplete or unrepresentative
training data, and also from relying on complete and repre-
sentative data that reflect and reproduce (at scale) pre-
existing bias. Using black-box or gray-box algorithm de-
signs , where the inferences are not understoord by anyone,
makes such bias harder to mitigate and detect, while the
speed and scalability can multiply the effect of inappro-
priate bias faster than traditional enforcement efforts can
react. In our example, for hundreds of years clinicians
have evaluated a patient’s retina for the different indicators
of diabetic retinopathy, such as hemorrhages, microaneur-
ysms, and neovascularization—indicators or biomarkers
that are invariant with regard to race, ethnicity, sex, and
age. Using multiple, statistically dependent detectors for
such lesions,35,36 each optimized using machine learning
algorithms, addresses equity in the design phase.37,38

Studies have shown that machine learning algorithms
that align closely to the way clinicians diagnose are also
more robust to small perturbations in the input, and show
unexpected catastrophic failure, and are less likely to
exhibit inappropriate racial and other bias39,40

The autonomous AI evaluation rules also require that,
where possible, high-quality digital inputs and a corre-
sponding high-validity disease state, called a reference
standard or truth (such as patient outcome), are available,
as well as widely accepted associations between the disease
state and clinical management. For this example, in dia-
betes, decades of research is available regarding the diag-
nosis and management of diabetes and diabetic
retinopathy through the Diabetes Control and Complica-
tions Trial (DCCT), the Epidemiology of Diabetes Inter-
ventions and Complications (EDIC) study, the Diabetic
Retinopathy Study (DRS), the Early Treatment of Diabetic
Retinopathy Study (ETDRS), and the Diabetic Retinop-
athy Clinical Research (DRCR) studies.31,32,41,42

AUTONOMOUS AI DATA STEWARDSHIP

THE AUTONOMOUS AI EVALUATION PRINCIPLES REQUIRE

autonomousAI creators to be responsible stewards of patient
VOL. - AUTONOMOUS AI AND
data in order to design, develop, and monitor autonomous
AI systems. Thus, autonomous AI creators have an obliga-
tion to lawfully collect data, in this case, in compliance
with HIPAA/HITECH and other statutory and regulatory
rules, in a manner that is transparent about the purpose
and scope for which the data will be used.13 Data used by
the autonomous AI creator should be traceable to an autho-
rization to use such data. Transparency on the part of auton-
omous AI creators, through written agreements, is essential
to assess whether patients have adequately authorized use of
data. Physicians and AI creators together are accountable
directly to patients and each must take full responsibility
for protecting patient rights as stewards of patient-derived
data. Additionally, the rules require auditable processes
and security controls to ensure that data are being used in
accordancewith the scope forwhich such usewas authorized
and to protect the data from unauthorized use or access. A
current controversy is the desire of clinicians contributing
the reference standard to patient-derived data to be
rewarded or recognized for their contribution to the intellec-
tual property of an AI system (eg, Paige.AI and Memorial
Sloan Kettering) through their diagnostic work, recorded
inmedical records and subsequently used to train or evaluate
an AI system. Such ownership collides with rising public
desire for increased control over, and privacy regarding,
electronic data and emerging regulations to address these
(General Data Protection Regulation (EU) 2016/679
(GDPR)/California consumer privacy act AB 375), as well
as increasing patient activism for inclusion in recognitions
for specimen contribution to scientific advances.
CLINICAL VALIDATION OF SAFETY,
EFFICACY, AND EQUITY OF

AUTONOMOUS AI

THE EVALUATION RULES REQUIRE HIGH QUALITY AND

rigor of autonomous AI validation studies for safety, effi-
cacy, and equity, based on the ethical principles of nonma-
leficence and justice (Table 1),30 so as to ensure that safety
and efficacy are equally valid for racial, ethnic, age, and sex
subgroups, in relation to hypothesis testing study end-
points. In our example, safety was quantified using the
sensitivity metric, which expresses how many patients
with disease it diagnoses correctly, as a missed diagnosis
can cause harm to the patient. A 100% sensitive AI can
be created by always outputting ‘‘has disease’’ for every pa-
tient, but it would also be useless because its specificity
would be 0%. Efficacy was quantified using the specificity
metric, which expresses how many patients without disease
it diagnoses correctly as not having the disease, since misdi-
agnosis of a patient without disease increases resource use
without benefit to that patient. A 100% specific autono-
mous AI can be created by always outputting a ‘‘no disease’’
for every patient, but it would also be useless because its
5ETHICAL PRINCIPLES



sensitivity would be 0%. Obviously, the challenge is to
create an autonomous AI with the right balance between
sensitivity and specificity given a particular use case. Equity
was quantified with a combination of a diagnosability
metric and a statistical analysis of subgroup validity. The
diagnosability metric expresses how many patients receive
a valid diagnostic result, rather than an indeterminate
result. If only a small subset of patients with disease can
be adequately diagnosed, then equity is diminished.

The hypothesis tested was that all 3 outcome parameters
of sensitivity, specificity, and diagnosability exceed a preset
threshold in the entire US population of people with dia-
betes, against surrogate outcome.43 Earlier studies showed
that experienced clinicians had 30%-40% sensitivity, 95%
specificity, and 80%-90% diagnosability against this same
surrogate outcome, and thus were unlikely to meet the 3
endpoints.44,45 The autonomous AI exceeded all 3 superior-
ity endpoints, at 87%, 91%, and 96% for sensitivity, speci-
ficity, and diagnosability, respectively. This confirmed the
hypothesis of safety, efficacy, and equity. In addition, sub-
group validity statistical analysis determines the amount of
inappropriate diagnostic biases—as these can lead to clin-
ical outcome disparities—and includes stratification of
sensitivity, specificity, and diagnosability by race, ethnicity,
sex, and age, as well as any other relevant group character-
istics. In our example, safety, efficacy, and equity principles
were implemented as 3 study endpoints of sensitivity, spec-
ificity, and diagnosability, with subgroup validity analysis,
all of which had to be met to satisfy hypothesis testing.43

As we saw, the autonomous AI evaluation rules require
comparing the autonomous AI to clinical outcome to esti-
mate safety, efficacy, and equity. Given that clinical
outcome is central to patient benefit of the autonomous
AI, outcome or surrogate outcome (in the case of chronic
diseases, where actual outcome only appears sometimes de-
cades later) are clearly optimal. For our example, many
foundational studies for diabetic retinopathy treatment
and management performed over the past 5 decades were
available, so that the so-called ETDRS severity scale, as
well as the DRCR’s center-involved macular edema scale,
were available as robust surrogate outcomes.31,32,41,42 It is
obviously of great importance that surrogate outcomes are
stable over time as well as consistent, as multiple studies
have shown for our example.33,46 Such surrogate outcomes
are fundamentally different from clinicians’ agreement
with the AI or even each other: rarely has the diagnostic
performance of such individual clinicians been validated
against outcome. In many cases, when initiating develop-
ment of (autonomous) AI, the typical process involves a
single clinician evaluating a patient image for clinical pur-
poses, and there are no data on how their evaluation relates
to a clinical outcome. Where widely accepted clinical
outcome surrogates are not available for chronic diseases,
as is for example the case for glaucoma, they should be
established to determine the safety, efficacy, and equity,
commensurate with patient risk of harm.
6 AMERICAN JOURNAL OF
The autonomous AI evaluation rules require preregis-
tered studies, which is consistentwithUS federal regulation.
Without preregistration, autonomousAI performance tends
to be overestimated, while successful study replication be-
comes less likely: in fact when comparing trials with and
without preregistration, the trial effect sizes are larger
when lacking preregistration.43,47 Other considerations for
correct validation related to good clinical practice4 include
a hypothesis-testing design with predefined endpoints, a
predefined method for statistical analysis, predefined inclu-
sion and exclusion criteria, a predefined sampling protocol,
a plan for handling of the trial data by an independent con-
tract research organization or third party, and prohibition of
access by the researchers to the subject-level results before
finalizing the statistical analysis.
The autonomous AI evaluation rules require validation

in the envisioned context, environment, and workflow, in
‘‘locked’’ form, so that its performance is known and persists
in clinical practice—thus avoiding the unanticipated effect
of AI in the Fenton study.9 Such a locked autonomous AI,
once validated, cannot be automatically updated based on
new inputs, as then the safety efficacy and equity are not
known. This precludes, for now, ‘‘continuous learning’’ AI
systems that automatically update as they process new in-
puts, in chronic disease. In our example, this required the
trial to be performed in primary care clinics, in the standard
diabetes management workflow, without modifications to
the clinic environment, and with operators recruited from
existing staff without prior experience or training.
LEGAL CONSIDERATIONS OF
AUTONOMOUS AI

AUTONOMOUS AI—EVENWHEN EMBEDDED IN THE HEALTH-

care system andMedical Homemodels—introduces several
accountability and medicolegal considerations. While
these are not ethical considerations per se, it is worthwhile
to evaluate them in this context.
The autonomous AI evaluation principles require crea-

tors of autonomous AI to assume liability for harm caused
by the diagnostic output of the device when used properly
and on-label. This is essential for adoption—it is inappro-
priate for clinicians, using an autonomous AI to make a
diagnosis they are not comfortable making themselves, to
have full medical liability for harm caused by that AI.
This view was recently endorsed by the AMA in its 2019
AI Policy.1 Just like a physician that would be held legally
responsible for his or her diagnosis or other clinical deci-
sion, IDx, as creators of autonomous AI products, assume
similar liability and have obtained medical malpractice in-
surance. This paradigm shifts medical liability for a medical
diagnostic from the provider managing the patient’s dia-
betes, who orders the autonomous point of care retinal ex-
amination, to the autonomous AI creator.
--- 2020OPHTHALMOLOGY



However, medical decisions by autonomous AI on indi-
vidual patients typically cannot be unequivocally labeled
as correct or incorrect, especially in chronic diseases where
outcomes may emerge years later. On populations of patients,
however, the medical decisions can be compared statisti-
cally to the desired decisions, for example to claimed cor-
rectness, and it is thus where the liability will be focused.
Another issue is that, while autonomous AI is preferably
compared to patient outcome or surrogate outcome, this re-
quires enormous resources that will not be available for the
individual patient where liability is at stake. Then, the
autonomous AI decision will be compared to an individual
physician or group of physicians, lacking validation and,
thus, with unknown correspondence to outcome or surro-
gate outcome. As an aside, this can be an issue also for
so-called continuous learning AI systems.

These distinctions will need to be resolved as various AI
applications move forward. The legal responsibility for an
AI system built in partnership with a large learning health-
care system and intended to be used on its patient popula-
tion is, by definition, more diffuse and likely to vest in the
sponsoring healthcare system or with some comparative or
contributory analysis of fault. A privately designed system,
sold as a finished product, will need to bear its own respon-
sibility for autonomous output, absent superseding or inter-
vening causation.

What is clear is that the bedside provider using the AI
output does not have the proficiency to make the particular
clinical decision for which they need the AI. Responsibility
for proper use and maintenance of the device, consistent
with terms of service and FDA labeling, remains with the
providers. This situation is different, however, for assistive
AI, where a physician is able to make an independent eval-
uation of the AI system’s recommendation output and re-
mains fully liable.

The output of the autonomous AI system, though valid
as a diagnostic record from a regulatory perspective, is not
currently defined as a medical record when it is not signed
VOL. - AUTONOMOUS AI AND
off on by a physician. What is and is not, and who can and
cannot create, a medical record is determined primarily by
the state medical boards. At present, most state medical
boards do not consider an autonomous AI output to have
the same medicolegal status as physician documentation.
The legal status of reports generated byAI has been brought
to the attention of the Federation of State Medical Boards.
SUMMARY

THE AUTONOMOUS AI EVALUATION RULES DISCUSSED IN

this article both implicitly and explicitly played a role
in ongoing discussions with the FDA and the medical
and legal community, to establish the safety, efficacy,
and equity of autonomous AI. It led to the first preregis-
tered, prospective clinical trial—the standard in FDA
drug trials—and de novo FDA authorization of an autono-
mous AI system, in a real-world clinical setting, with pri-
mary care–based operators. The surrogate outcome
reference standard to which the autonomous AI perfor-
mance was compared was derived from an independent
reading center with validated published protocols and
reproducibility and repeatability metrics. The trial
showed that autonomous AI exceeded the 3 prespecified
superiority endpoint goals of sensitivity, specificity, and
diagnosability, and that there was no significant effect of
race or ethnicity on these 3 endpoints.
As physicians, we are likely to be asked more andmore to

evaluate the clinical value and scientific evidence for
autonomous AI, just as we are now asked for novel drug
treatments. Thus, physicians need to become competent
in understanding the limitations and risks as well as the po-
tential benefits of autonomous AI, and in understanding
the design; its liability; its safety, efficacy, and equity; and
how its data were obtained. The autonomous AI evaluation
rules introduced here may support this process.
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