Opportunities and Threats of Artificial Intelligence
A combination of many science disciplines

Bataafs Genootschap September 2020
John Schmitz Dean EEMCS Faculty
About John Schmitz

- Physical chemist (KUN)
- PhD on electrochemical/ thermodynamical topic
- 35 years experience in the micro-electronic industry (research/ manufacturing/ international consortia/ intellectual property)
- Since March 2017 Dean of the faculty of Electrical Engineering, Mathematics and Computer Science
ELECTRICAL ENGINEERING
MATHEMATICS AND COMPUTER SCIENCE
Faculty of Electrical Engineering, Mathematics & Computer Science

MICRO ELECTRONICS

QUANTUM & COMPUTER ENGINEERING

ELECTRICAL SUSTAINABLE ENERGY

APPLIED MATHEMATICS

SOFTWARE TECHNOLOGY

INTELLIGENT SYSTEMS
<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full professors</td>
<td>50</td>
</tr>
<tr>
<td>Associate/assistant professors</td>
<td>136</td>
</tr>
<tr>
<td>Permanent scientific staff</td>
<td>221</td>
</tr>
<tr>
<td>Support staff</td>
<td>133</td>
</tr>
<tr>
<td>PhD students</td>
<td>462</td>
</tr>
<tr>
<td>Postdocs</td>
<td>71</td>
</tr>
<tr>
<td>MSc students</td>
<td>1629</td>
</tr>
<tr>
<td>BSc students</td>
<td>2296</td>
</tr>
<tr>
<td>Annual turnover</td>
<td>€ 65M</td>
</tr>
</tbody>
</table>
Improving quality of LIFE

- Better prevention
 - MEMS (scanner for moulds)

- Faster and more accurate diagnostics
 - Bio informatics/ Alzheimer’s disease/ Nip test
 - Organ-on-a-chip
 - Medical data visualisation/ high-dimensional data
 - Digitization of data
 - MRI/ 3D Echo/ miniaturisation of ultrasound scanning

- Advanced therapy & treatment
 - Cochlear implants
 - VR mental training - e.g. support for anxiety disorder
 - Mathematical models for healing burns
 - Robotics – MEGA & PAL project
Accelerating the ENERGY TRANSITION

Large-scale implementation of renewable energy resources
- Life test stability and monitoring high voltage transmission lines including conversion AC/DC
- Conversion to H, system stability
- Upscaling of integration PV in system

Intelligent & flexible energy infrastructure
- ICT to control, monitor and protect future power systems
- Multi commodity grid
- Power to X
- Digitizing energy system and monitoring & control
- Multi array sensors
- Switching/conversion between energy carriers
- Supply and demand market
- (Heating) sensors/ stability grid

Electric mobility
- Energy conversion, storage and distribution technologies
- Smart dynamic charging of electric vehicles
- DC Grids and storage for smart cities
Developing responsible DIGITAL TECHNOLOGY for the good of society

Placing ethics at the heart of technology

TECHNOLOGY TO ADVANCE THE DIGITAL SOCIETY
- Robotics, AI, Internet of Things
- Quantum computer
- Autonomous Driving, XG, Wireless communication & sensing
- Blockchain, FinTech

SECURING RESPONSIBLE DEPLOYMENT OF TECHNOLOGY
- Responsible Artificial Intelligence (RAI)
- Cybersecurity (CYS)
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
What is Artificial Intelligence?

To Start:

- AI in development since 1950: will have more impact than internet and smartphone?
- Overestimation: pattern recognition well established but reasoning needs further work
- Much work done on narrow AI, another 50 years needed for general AI?
- Will computers replace humans?
What is Artificial Intelligence?

WIKIPEDIA: “In computer science, artificial intelligence (AI), is intelligence demonstrated by machines”

Encyclopedia Britannica: “artificial intelligence (AI), the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings.” Intelligent beings are those that can adapt to changing circumstances.

English Oxford Living Dictionary: “The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.”

Definitions difficult to give but many examples: chess-playing machines, image recognition, GPS, self-driving cars, spam filter, recommendation algorithms of Netflix and Amazon etc.
What is Artificial Intelligence?

Brief and concise:

- AI is a discipline that, among other things, focuses on the development of self-learning systems
- So it's much more than just computers and software
- It is a field of science (studying and constructing AI): how can you artificially realize human intelligence?
AI track at EEMCS contents

Specialisations

- Algorithmics
- Computer Graphics & Visualisation
- Cyber Security
- Distributed Systems
- Embedded & Networking Systems
- Interactive Intelligence
- Multimedia Computing
- Pattern Recognition & Bioinformatics
- Programming Languages
- Software Engineering
- Web Information Systems

Common Core courses

- Artificial Intelligence Techniques
- Algorithms for Intelligent Decision Making
- Conversational agents
- Deep Learning
- Information Retrieval
- Machine Learning 1
- Multimedia Search and Recommendation
- Evolutionary Algorithms
- Software Architecture
Artificial Intelligence
Machine Learning
and
Deep Learning

Artificial Intelligence
Software that is able to reason, react and adapt

Machine Learning
Algorithms that improve performance as they are exposed to more data

Deep Learning
A subset of machine learning in which layered neural networks learn from large amounts of data

Source: https://www.globalorange.nl/artificial-intelligence-machine-learning-en-deep-learning
What is Artificial Intelligence?

- AI uses a combination of mathematics + lots of calculation power + lots of data
- Important concepts in AI:
 - Algorithms: a set of rules that precisely defines a sequence of operations
 - Example: Start from a set of two numbers and then add the two numbers and give the addition result
 - Decision tree: is one of the predictive modelling approaches used in statistics, data mining and machine learning. Decision trees are constructed via an algorithmic approach that identifies ways to split a data set based on different conditions
 - Machine learning: computers that learn from examples and massive amounts of data
 - Machines actually learn by being given data rather than through human programming
 - Became more prevalent between the 1990s and 2000s
 - Example: Deep Blue world champion chess in 1998
 - Deep learning: is a subset of machine learning where artificial neural networks, algorithms inspired by the way the human brain works, learn from large amounts of data
 - Examples: speech recognition, Google search, facial recognition
Intelligence: Are there any challenges?

- In April 2017, AlphaGo vs. Jie Ke

Human error

AI surpassed human

AI requires huge resources
But....

it all begins with

Data Science

(the ambition to
gain insight from
data)
Data Becoming BIG

A zettabyte is 10^{21} (1,000,000,000,000,000,000,000 bytes)
But.... it all begins with Data Science (2)

- **Data Mining (DM):**
 - Discovering patterns in large data sets involving methods from AI, machine learning, statistics, and database systems. Includes: supervised methods (classification and regression), and unsupervised methods (clustering)

- **Data Preparation and Visualization (DPV):**
 - (i) techniques for extracting and transforming data,
 - (ii) modeling data for analytic purposes and
 - (iii) data visualization techniques

- **Information Extraction and Natural Language Processing (IENLP):**
 - Most information is available in a form rather unsuitable for processing by computers, namely natural language text

- **Feature Extraction from Time Series (TS):**
 - Sensors and other measurements increasingly produce massive amounts of data with space and time dimensions

- **Semi-structured Data (SEMI):**
 - There exist several data exchange and knowledge representation standards: manipulation of data in these standards

- **Probabilistic DataBases and Data Quality (PDBDQ):**
 - Much effort in data preparation is devoted to dealing with data quality problems like uncertainty in data.

- **Process Mining (PM):**
 - Aims to improve understanding and efficiency of business processes by analysing event logs with specialized data-mining algorithms

Data Science Process

Raw Data Collected → Data Is Processed → Clean Dataset → Exploratory Data Analysis

Reality → Data Product → Communicate Visualize Report → Make Decisions → Models & Algorithms

https://upload.wikimedia.org/wikipedia/commons/b/ba/Data_visualization_process_v1.png
Machine Learning Methods

- **Supervised learning (classification)**
 - Give inputs and results (tell upfront which input is a cat and a dog)
 - Example is prediction of temperature or stock market

- **Re-enforcement learning**
 - Only after inputs analysis is done will system get the right answer (tell only after analysis whether it was a cat or a dog)
 - Example: a robot that is learning to walk

- **Un-supervised learning (clustering)**
 - Systems explores data w/o any other inputs and will find out that there are groups in the data (dogs and cats): clustering
 - Example: detection of fraud bank transactions
WHAT’S THE DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP LEARNING? (Image recognition)
WHAT’S THE DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP LEARNING?

- Deep learning is a subtype of machine learning.
 - With machine learning, you manually extract the relevant features of an image.
 - With deep learning, you feed the raw images directly into a deep neural network that learns the features automatically.

- Deep learning often requires hundreds of thousands or millions of images for the best results. It’s also computationally intensive and requires a high-performance GPU.

https://nl.mathworks.com/discovery/deep-learning.html
WHAT’S THE DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP LEARNING?

Traditional Machine Learning
- Manual feature extraction
- Machine learning
- Car ✓
- Truck ✗
- Bicycle ✗

Deep Learning
- Convolutional neural network (CNN)
- End-to-end learning
- Car ✓
- Truck ✗
- Bicycle ✗

Machine Learning
- Good results with small data sets
- Quick to train a model
- Need to try different features and classifiers to achieve best results
- Accuracy plateaus

Deep Learning
- Requires very large data sets
- Computationally intensive
- Learns features and classifiers automatically
- Accuracy is unlimited

https://nl.mathworks.com/discovery/deep-learning.html
https://nl.mathworks.com/content/dam/mathworks/ebook/gated/80879v00_Deep_Learning_ebook.pdf
Deep Neural Network

A deep neural network combines multiple nonlinear processing layers, using simple elements operating in parallel and inspired by biological nervous systems. It consists of: an input layer, several hidden layers, and an output layer. The layers are interconnected via nodes, or neurons, with each hidden layer using the output of the previous layer as its input.

Multi Layer Perceptron (MLP)

https://nl.mathworks.com/discovery/deep-learning.html
Example neural network

MatLab tool

- MATLAB is a high-performance language for technical computing. It integrates computation, visualisation, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.

- Several known deep learning networks (such as GoogleNet and AlexNet) can be used in this environment:
 - **GoogleNet**
 - 22 hidden layers
 - **AlexNet**
 - Contains eight layers; the first five were convolutional layers, some of them followed by max-pooling layers, and the last three were fully connected layers.
Example with GoogleNet in MatLab

```
>> Image = imread('C:\Users\jeschmitz\pictures\matlab.jpg');
>> figure
>> imshow(Image)
>> [label, scores] = classify(net, Image);
>> label

label =
    categorical
    barometer
```

https://www.cs.ryerson.ca/~aharley/vis/conv/
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
The dream of robot researchers is edging closer with automated laboratory producing five years of experiments in just two weeks, experts claim.

In a Science Robotics paper, fluid dynamics researchers describe how they set up an “intelligent towing tank” to test the vortex-induced vibrations created when a body is dragged through water – an important area applicable to shipping and ocean structures.

The robot was able to observe the results and plan a follow-up experiment, which it had done so 100,000 times in its first year, “essentially completing the equivalent of all of a PhD student’s experiments every two weeks”, says the paper.

Example of Data Science Application: **Automatic detection of Atrial fibrillation episodes**

- Atrial fibrillation (AF) occurs as a complication postoperatively from cardiac surgery. AF results in stasis of the blood. In the postoperative period AF can induce delirium and neurocognitive decline, thereby prolonging the hospital stay. On the long term serious complications like thromboembolic diseases, stroke and heart failure can be induced by AF. These complications result in increased morbidity and mortality and prolonged hospital stays. Precise ECG monitoring is important to detect AF as soon as possible. Then complications caused by AF can be obviated due to a fast intervention.

- The challenge was to develop an algorithm/method that can detect automatically episodes of AF (minimum of 30 seconds) from (preprocessed) ECG data.
25,000 fewer delivery vans on the road due to smart delivery

Picnic is able to deliver efficiently to its customers thanks to a smart algorithm, devised by Joris van Tatenhove, the mathematics graduate from TU Delft who joined Picnic when he was 21. He has found an almost ultimate solution for a time-honoured logistical challenge, the so-called 'travelling salesman problem'. In short, it's all about how to get from place A to many other places with as few vehicles as possible and as short a distance as possible, and eventually return to place A.

(https://www.ttm.nl/it/ritplanning/slim-algoritme-maakt-ritten-picnicstukken-efficienter/122344/)
Real-time Deep Learning Algorithms for Optimal Traffic flow at Bridge openings

The province of Zuid-Holland plays an important role in the traffic flow within the region by operating and maintaining more than 100 bridges. Smart ICT solutions offer new opportunities to use sensors and algorithms to connect real-time traffic information to live shipping information. Forecasting traffic intensities around a number of important bridges in the province of Zuid-Holland. The Long Short-Term Memory neural networks can make predictions up to 21 minutes ahead with a correlation coefficient accuracy of 75-95%.

An AI system identified a potential new drug for fibrosis in 46 days

- The approach is based on two popular AI techniques: generative adversarial networks, and reinforcement learning.
- The news: A team from Insilico Medicine took 21 days to create 30,000 designs for molecules which target a protein linked with fibrosis (tissue scarring.) They synthesized six of these molecules in the lab, then tested two in cells, with the most promising one tested in mice. The researchers concluded it was potent against the protein and showed “drug-like” qualities. All in all, the process took just 46 days.
- Context: Getting a new drug to market is hugely costly and time-consuming: it can take 10 years and cost as much as $2.6 billion. No wonder then, that there’s so much work underway on using AI to expedite the process.
- A word of caution: The research looks promising, but it’s still very much a proof-of-concept. We’re a long way from AI-designed drugs being created, let alone sold to patients. We explored the issue in this article from our TR10 issue earlier this year.
Miguel Bessa (3ME) finds a new, super compressible material by using artificial intelligence to search for new materials. According to Bessa, experiments can be reduced to an absolute minimum by searching in this way.

https://www.youtube.com/watch?v=cWTWHhMAu7I&feature=youtu.be
How AI trained to read scientific papers could predict future discoveries

• “In the new study, an AI learned to retrieve information from scientific literature via unsupervised learning. This has remarkable implications. So far, most of the existing automated NLP-based methods are supervised, requiring input from humans. Despite being an improvement compared to a purely manual approach, this is still a labour intensive job.”

• “Scientific progress relies on the efficient assimilation of existing knowledge in order to choose the most promising way forward and to minimize re-invention. As the amount of scientific literature grows, this is becoming increasingly difficult, if not impossible, for an individual scientist.

• We hope that this work will pave the way towards making the vast amount of information found in scientific literature accessible to individuals in ways that enable a new paradigm of machine-assisted scientific breakthroughs.”

With the help of Data Science, the NIPT test reads millions of pieces of prenatal DNA for certain diseases.
Non invasive pregnancy test

- TU Delft contribution leads to low cost test because of
 - Within sample comparison: no requirement to re-run healthy references!!
 - Affordable low coverage Next Generation Sequencing
- NIPT can detect Down syndrome and other genome deviations
- Test done on plasma from maternal blood: no risk of miscarriage
- Used in most Dutch medical centers
Digital twins

- They integrate: Internet of Things | Artificial Intelligence | Machine Learning | Software analytics with spatial network graphs

- Creating living digital simulation models that update and change as their physical counterparts change.
 - A digital twin continuously learns and updates itself from multiple sources to represent its near real-time status, working condition or position.
 - This learning system, learns from itself, using sensor data that conveys various aspects of its operating condition

- A digital twin also integrates historical data from past machine usage to factor into its digital model
Digital twins - EXAMPLE

For aircraft collecting, per engine, all data of a flight between London and Paris. The data is transferred to a data center, where it generates a real-time digital twin of each engine. In this way, General Electric is able to detect potential defects or faults already during the flight. So, if a part of the engine is causing a fault, the personnel that is responsible for maintenance can have the replacement part ready at the airport where the aircraft will land.
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
Concerns about AI

• Do we understand the methods sufficiently so that we know that if we apply a method in a new situation, it will again work in the same way as in all previously considered (and perhaps trained) situations.

• This is a concern for three reasons:
 1) use of data that encodes the world but perhaps that encodes and abstracts incorrectly
 2) use of learning from examples with risks being valid for general application
 3) use of reinforcement/deep tactics that are completely a “black box” (not explainable anymore)
Concerns about AI
DeepFake

AI technology that uses existing images and audio fragments to create convincingly fake videos of existing people.
Autonomous Intellectual Technology: AITech
https://www.tudelft.nl/en/aitech/

AI Tech culminates research activities of 4 of the 8 faculties of TU Delft active in the domain of AI:

- The focus of the Industrial Design Engineering Faculty is on developing design methodologies for humans and non-human partners such as forms of artificial intelligence that interact and do business with humans.
- The faculty of Mechanical, Maritime and Materials Science Engineering centres around the issue of meaningful human control.
- The faculty of Electrical Engineering, Mathematics and Computer Science is devoted to research on reliable and responsible use of data and algorithms.
- The faculty of Technology, Policy and Management conducts a rich portfolio of research covering ethical, social and institutional aspects of the rapidly emerging digitalisation of society in all of its complexities.
Autonomous Intellectual Technology: AiTech

Why meaningful human control?

Today’s engineers create systems that are ever more equipped with artificial intelligent technologies. Autonomous behavior of cars, robots, and decision support algorithms is becoming a reality. Our vision is that scientists should not only research the technology that makes intelligent autonomy possible, but also act upon the responsibility to ensure that design, engineering, and use of such systems embrace human values and meaningful human control.

Our ‘how to’ approach

Meaningful human control is particularly important in cases of failures or conflicts with the normative foundations of society, social conventions, and human acceptability. We believe these challenges demand a multidisciplinary effort, bringing together researchers across a wide range of fields. Our aim is to provide answers to ‘how to’ build autonomous intelligent systems that collaborate with humans towards societal and economic prosperity and the sustainable development of our planet.

AiTech’s objectives

- Understand the implications of meaningful human control for the science, design, and engineering of autonomous intelligent systems
- Build, test, break, and learn from systems under meaningful human control in practice
- Develop educational programs on the use of meaningful human control in autonomous intelligent systems

Designing for human rights in AI
Embodied manifestations of human-AI partnerships
Predictability of human-AI interactions
Quantifying the user’s trust in intelligent systems
Uncertainty for meaningful human control
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
ARTIFICIAL INTELLIGENCE

What is it?
What are the benefits?
What are the threats?
What can we expect?
Er Komt Geen Zelfrijdende Auto

• Lekker de krant lezen of een uurtje extra werken, de voordelen van een zelfrijdende auto lijken groot, toch komt er in de praktijk nog niet veel van terecht. Niet alleen, omdat het technologisch nog steeds een uitdaging is, maar ook omdat mensen niet snel voldoende vertrouwen hebben in een robot.

• “De revolutie van de chauffeurloze auto gebeurt niet,” is dan ook de stellige overtuiging van Carlo van de Weijer, expert slimme mobiliteit aan de TU Eindhoven. “De robotauto is een oplossing voor een niet bestaand probleem,” zegt hij in de Volkskrant. En hij is niet de enige. Steeds meer wetenschappers denken dat het nog lang gaat duren voordat auto’s echt zelfstandig kunnen rijden. Het is namelijk veel complexer dan een aantal jaar geleden werd gedacht

• Experimenten van Audi en Volvo laten zien dat de zelfrijdende auto nog ver weg is. Zo kon de Audi A8 alleen in de file autonoom rijden en niet harder dan 60. Dat is behoorlijk beperkt. Bovendien: die auto is er nog steeds niet. “De techniek kan het misschien al voor 99,9 procent zelf af”, aldus Bert van Wee, hoogleraar mobiliteitsbeleid aan de TU Delft. “Maar er zijn veel meer negens achter de komma nodig, omdat het aantal ongevallen anders onacceptabel hoog is.”

• https://www.welingelichtekringen.nl/tech/1389026/er-komt-geen-zelfrijdende-auto.html
EU dreigt digitale kolonie te worden

Kunstmatige intelligentie China en de VS werken al jaren aan werelddominanie. ‘Het gaat om de volgende industriële revolutie, er staat veel op het spel.’

Source: Wouter van Noort

Patent filing breakdown:
50% Chinese
30% USA
15% EU
5% ROW
Hybrid Intelligence: The computer as fellow human being
(Frank van Harmelen, Professor Knowledge Representation & Reasoning)

• Increasingly, AI research shows that AI is very different from human intelligence. In some cases, computers are much stronger than humans: computers have a perfect memory, they can see patterns that are invisible to the human eye and they can follow reasoning that is much longer than is possible for the human brain.

• But on the other hand, people are subtly aware of the context in which they find themselves, they are aware of what actions in such a context are or are not socially or even morally ethical, and unlike computers, people are the best collaborators.
The internet was supposed to become a sanctuary for the individual, but superpowers like Google or Facebook make up the service. Researchers from Delft are trying to give the net back to the public.
Is AI a Hype and will it go away?

Ai-hype over hoogtepunt heen

World Summit AI in Amsterdam/Zaandam

10 oktober 2019 12:07 | Alfred Monterie | 🗓️ 5
Conclusions

• AI will bring us mind boggling results in the years to come
• AI will bring us many problems in the years to come, but the academic world is aware of this and working on solutions
• What now……?
 • AI may have currently a certain hype content but it will not go away
 • The focus and themes of AI may change over time
Links

• Nationale AI cursus: https://app.ai-cursus.nl/home
• TUD AI website van EEMCS: https://www.tudelft.nl/ai/
• AiTech initiative of the TUD: https://www.tudelft.nl/en/aitech/
• Indeling informatica onderwijsprogramma
 https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
AIDU (AI for Delft University) en DAI-Labs (Delft AI Labs)

Luuk Mur / Roos ter Elst
2. Missie AIDU

De TU Delft zal het huidige budget voor onderzoeks- en onderwijsactiviteiten rondom AI, Data en Digitalisatie bijna verdubbelen, tot 70 miljoen euro per jaar.

- **Verhoog zichtbaarheid en impact**
- **AI, Data en Digitalisation voor onderzoek/ onderwijs/ onderwijs-innovatie aan de TU Delft**
2. Ambities AIDU

- Aantrekken nieuw talent en opzetten van nieuwe Labs
- Additionele onderwijsprogramma’s voor BSc, MSc, PhD, en programma-overschrijdende training
- Versnelde onderwijsinnovatie
- Additionele faciliteiten en technische- en valorisatie ondersteuning
- Versterken van samenwerkingen, partners en netwerken
- Verlengde regionale samenwerking
2. Het DAI-Lab concept

Een DAI-Lab belichaamt de brug tussen expertise in AI-grondslagen en expertise van gebieden die met behulp van AI werken aan maatschappelijke en wetenschappelijke uitdagingen.

Onderzoek
- Combinatie fundamentele en toegepaste AI
- Cross-fertilisatie tussen expertises

Onderwijs
- Versterken onderwijs portfolio
- Verhogen onderwijs capaciteit
- Cross-universitaire training

Valorisatie
- Interdisciplinaire innovaties
- Adresseren van huidige wetenschappelijke en maatschappelijke uitdagingen

Gemeenschap
- Opzetten 24 DAI-labs in 2020/2021
- Werven 150 (startende) academische talenten
2. Doelen DAI-Labs

Door het bouwen van bruggen tussen onderzoek *in* en *met* AI, Data en Digitalisatie, versterken/verhogen we ons impact en visibiliteit in deze en andere gerelateerde velden.
2. DAI-Labs

Aantal DAI-labs – 24 in totaal in 3 calls
1. 8 interdisciplinaire DAI-labs gelanceerd (juni 2020)
2. 8 interdisciplinaire DAI-labs te lanceren in 2020
3. 8 interdisciplinaire DAI-labs te lanceren in 2021

De kern van elk DAI-lab bestaat uit:
• 2 Tenure Trackers (1 IN AI en 1 MET AI)
• 4 Gezamenlijke PhD’s (2 bij elke betrokken faculteit)
2. DAI labs – de eerste 8

<table>
<thead>
<tr>
<th>DAI lab</th>
<th>Description</th>
<th>Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DUU</td>
<td>3D Urban Understanding</td>
<td>Liangliang Nan / Julian Kooij</td>
</tr>
<tr>
<td>AidroLab</td>
<td>Artificial intelligence research in water management</td>
<td>Riccardo Taormina / Elvin Isufi</td>
</tr>
<tr>
<td>AI*MAN</td>
<td>Developing optimal and transparent decision making in human-AI teams</td>
<td>Anahita Jamshidnejad / Myrthe Tielman</td>
</tr>
<tr>
<td>CTAI-Lab</td>
<td>CiTy AI Lab</td>
<td>Sander van Cranenburgh / Simeon Calvert / Oded Cats</td>
</tr>
<tr>
<td>DeTAIL</td>
<td>Delft Tensor AI Lab</td>
<td>Borbála Hunyadi / Kim Batselier</td>
</tr>
<tr>
<td>DI_Lab</td>
<td>Designing Intelligence Lab</td>
<td>Catharine Oertel / Peter Lloyd</td>
</tr>
<tr>
<td>IRIS</td>
<td>Intelligent & Reliable Imaging Systems</td>
<td>David Maresca / Arjen Jakobi / Carlas Smith</td>
</tr>
<tr>
<td>MACHINA</td>
<td>Machine Intelligence Advances for Materials</td>
<td>Miguel Bessa / Angelo Accardo</td>
</tr>
</tbody>
</table>
DAI-labs: 2020 Call

- **Werving 16 nieuwe Assistant Professors**
 - Zomer 2020

- **Voorstellen voor 2e call DAI-Labs**
 - Najaar 2020

- **Selectie 8 nieuwe DAI-Labs**
 - Voor einde 2020